Dienst van SURF
© 2025 SURF
Learner metacognition is one of the most influential factors that positively affects learning. Previous work shows that game-based learning can contribute to supporting and developing metacognitive knowledge and skills of learners. While there are many specific examples of such games, it remains unclear how to effectively design game-based learning environments to achieve this in an effective way. In other words: there is sufficient case-specific evidence, but limited design knowledge derived from such cases. In this paper, we attempt to identify such intermediary design knowledge that resides between specific games and generalized theory. We present three design experiments where game-based metacognitive training is evaluated in real-world educational settings. We collected insights regarding usefulness, motivation, usage, effort, and metacognition among participating students. From these experiments we identify what was learned in the form of design recommendations and, as such, contribute to collecting intermediary design knowledge for designing game-based metacognitive training.
This study furthers game-based learning for circular business model innovation (CBMI), the complex, dynamic process of designing business models according to the circular economy principles. The study explores how game-play in an educational setting affects learning progress on the level of business model elements and from the perspective of six learning categories. We experimented with two student groups using our game education package Re-Organise. All students first studied a reader and a game role description and then filled out a circular business model canvas and a learning reflection. The first group, i.e., the game group, updated the canvas and the reflection in an interactive tutorial after gameplay. The control group submitted their updated canvas and reflection directly after the interactive tutorial without playing the game. The results were analyzed using text-mining and qualitative methods such as word co-occurrence and sentiment polarity. The game group created richer business models (using more waste processing technologies) and reflections with stronger sentiments toward the learning experience. Our detailed study results (i.e., per business model element and learning category) enhance understanding of game-based learning for circular business model innovation while providing directions for improving serious games and accompanying educational packages.
MULTIFILE
An increasing number of studies support a mediating influence of personality on video-game preferences and player experiences, and in particular, traits associated with playfulness, such as extraversion. Educational institutions, however, tend to reward serious personality traits, such as conscientiousness. Aim.To discern how students respond to Game-Based Learning (GBL) in the classroom, and to understand if and how conscientiousness mediates GBL, we performed a field study at a leading university of technology in northeast China. Method. In May 2019, 60 bachelor and executive students in public-administration studies consecutively played two digital serious games, TEAMUP (multiplayer) and DEMOCRACY3 (single player). Data accrued through surveys with pregame measurements of personality (conscientiousness), mediating factors (motivation, player experience), learning effectiveness (cognitive and non-cognitive learning), and GBL acceptance. Results. Analysis showed a strong overall learning effect for both games. Conscientiousness significantly related to cognitive learning in both games and noncognitive learning in the multiplayer game only. Conscientiousness also significantly related to player experiences in the multiplayer game. Furthermore, the conscientiousness facet of perfectionism was a dominant factor in player experience and learning. We discuss the findings in light of several aspects around GBL that require more attention and research, especially that, alongside other factors, conscientiousness may be an important dimension to consider in the design and implementation of GBL in education, and GBL can have a positive role in the modernization of education in non-Western countries
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
How do learners understand, monitor, and regulate their own learning? A question of metacognition. Improving metacognitive knowledge and skills contributes too learning effectiveness and effiency. The goal of this PhD project is to study in what ways metacognitive training can be supported and facilitated trhough game-based learning.
The objective of DIGIREAL-XL is to build a Research, Development & Innovation (RD&I) Center (SPRONG GROUP, level 4) on Digital Realities (DR) for Societal-Economic Impact. DR are intelligent, interactive, and immersive digital environments that seamlessly integrate Data, Artificial Intelligence/Machine Learning, Modelling-Simulation, and Visualization by using Game and Media Technologies (Game platforms/VR/AR/MR). Examples of these DR disruptive innovations can be seen in many domains, such as in the entertainment and service industries (Digital Humans); in the entertainment, leisure, learning, and culture domain (Virtual Museums and Music festivals) and within the decision making and spatial planning domain (Digital Twins). There are many well-recognized innovations in each of the enabling technologies (Data, AI,V/AR). However, DIGIREAL-XL goes beyond these disconnected state-of-the-art developments and technologies in its focus on DR as an integrated socio-technical concept. This requires pre-commercial, interdisciplinary RD&I, in cross-sectoral and inter-organizational networks. There is a need for integrating theories, methodologies, smart tools, and cross-disciplinary field labs for the effective and efficient design and production of DR. In doing so, DIGIREAL-XL addresses the challenges formulated under the KIA-Enabling Technologies / Key Methodologies for sectoral and societal transformation. BUas (lead partner) and FONTYS built a SPRONG group level 4 based on four pillars: RD&I-Program, Field Labs, Lab-Infrastructure, and Organizational Excellence Program. This provides a solid foundation to initiate and execute challenging, externally funded RD&I projects with partners in SPRONG stage one ('21-'25) and beyond (until' 29). DIGIREAL-XL is organized in a coherent set of Work Packages with clear objectives, tasks, deliverables, and milestones. The SPRONG group is well-positioned within the emerging MINDLABS Interactive Technologies eco-system and strengthens the regional (North-Brabant) digitalization agenda. Field labs on DR work with support and co-funding by many network organizations such as Digishape and Chronosphere and public, private, and societal organizations.