How do learners understand, monitor, and regulate their own learning? A question of metacognition. Improving metacognitive knowledge and skills contributes too learning effectiveness and effiency. The goal of this PhD project is to study in what ways metacognitive training can be supported and facilitated trhough game-based learning.
Game-based learning can motivate learners and help them to acquire new knowledge in an active way. However, it is not always clear for learners how to learn effectively and efficiently within game-based learning environments. As metacognition comprises the knowledge and skills that learners employ to plan, monitor, regulate, and evaluate their learning, it plays a key role in improving their learning in general. Thus, if we want learners to become better at learning through game-based learning, we need to investigate how metacognition can be integrated into the design of game-based learning environments.In this paper we introduce a framework that aids designers and researchers to formally specify the design of game-based learning environments encouraging metacognition. With a more formal specification of the metacognitive objectives and the way the training design and game design aims to achieve these goals, we can learn more through analysing and comparing different approaches. The framework consists of design dimensions regarding metacognitive outcomes, metacognitive training, and metacognitive game design. Each design dimension represents two opposing directions for the design of a game-based learning environment that are likely to affect the encouragement of metacognitive awareness within learners. As such, we introduce a formalised method to design, evaluate and compare games addressing metacognition, thus enabling both researchers and designers to create more effective games for learning in the future.
If we want game-based learning to make learning enjoyable as well as effective and efficient, we need to increase learner's awareness of and ability in learning itself. At the heart of learning is metacognition: a learner's understanding of how knowledge is constructed through learning, and the repertoire of strategies, tactics, and monitoring processes that enact learning. The goal of this PhD research is to inform designers and researchers who want to support and improve metacognition of learners within game-based learning environments, by identifying, implementing, and evaluating generic design principles for metacognitive interventions.
Learner metacognition can positively impact learning. However, little is known about how to effectively design game-based learning environments such that metacognition is promoted in learners. Previous research does not provide sufficiently structured and empirically verified insights for designers and researchers to make informed design decisions. This paper describes the development of a design framework for metacognition in game-based learning. The framework is derived from existing literature and cases, and further elaborated through a formative expert evaluation. For instruction, gameplay, and the integration of both, the resulting framework defines specific design dimensions that indicate the relevant areas in which informed design-decisions are likely to affect learners' metacognition. As such, this framework aids specification of designs, structured comparisons between different designs, and focused research effort in identifying specific design guidelines for metacognition in game-based learning.
LINK
Afgerond
Niet bekend