Service of SURF
© 2025 SURF
This paper is a case report of why and how CDIO became a shared framework for Community Service Engineering (CSE) education. CSE can be defined as the engineering of products, product-service combinations or services that fulfill well-being and health needs in the social domain, specifically for vulnerable groups in society. The vulnerable groups in society are growing, while fewer people work in health care. Finding technical, interdisciplinary solutions for their unmet needs is the territory of the Community Service Engineer. These unmet needs arise in local niche markets as well as in the global community, which makes it an interesting area for innovation and collaboration in an international setting. Therefore, five universities from Belgium, Portugal, the Netherlands, and Sweden decided to work together as hubs in local innovation networks to create international innovation power. The aim of the project is to develop education on undergraduate, graduate and post-graduate levels. The partners are not aiming at a joined degree or diploma, but offer a shared short track blended course (3EC), which each partner can supplement with their own courses or projects (up to 30EC). The blended curriculum in CSE is based on design thinking principles. Resources are shared and collaboration between students and staff is organized at different levels. CDIO was chosen as the common framework and the syllabus 2.0 was used as a blueprint for the CSE learning goals in each university. CSE projects are characterized by an interdisciplinary, human centered approach leading to inter-faculty collaboration. At the university of Porto, EUR-ACE was already used as the engineering education framework, so a translation table was used to facilitate common development. Even though Thomas More and KU Leuven are no CDIO partner, their choice for design thinking as the leading method in the post-Masters pilot course insured a good fit with the CDIO syllabus. At this point University West is applying for CDIO and they are yet to discover what the adaptation means for their programs and their emerging CSE initiatives. CDIO proved to fit well to in the authentic open innovation network context in which engineering students actively do CSE projects. CDIO became the common language and means to continuously improve the quality of the CSE curriculum.
Smart home technologies are a large potential market for the construction and building services industry. This chapter discusses the topics consultants, installers, and suppliers of home automation systems encounter when working in the field. Improved communication skills and more flexible approaches to the design and installing of building services leads to many new opportunities for new products and services. There are a large number of requirements from the perspective of architectural design and building services engineering, which relate to the infrastructure that is needed for smart homes. An overview of these electrical engineering and ICT requirements is discussed. When working with clients, it is important to consider the additional set of rules of working in their homes. Clients may have additional needs in the field of home modifications that can also be addressed when doing retrofitting projects. An outline of steps to get stared and essential questions for professional care organization is given.
LINK
In the fall of 1999, an international integrated product development pilot project based on collaborative engineering was started with team members in two international teams from the United States, The Netherlands and Germany. Team members interacted using various Internet capabilities, including, but not limited to, ICQ (means: I SEEK YOU, an internet feature which immediately detects when somebody comes "on line"), web phones, file servers, chat rooms and Email along with video conferencing. For this study a control group with all members located in the USA only also worked on the same project.
De innovatiewerkplaats Campus Design (CD) richt zich op de duurzame ontwikkeling (SDG) van de campus door middel van praktijkgerichte oplossingen en onderzoek. Vanuit het lectoraat Facility Management van de Hanze, werkt CD samen met kennis- en onderwijsinstellingen, overheden en het bedrijfsleven, bijvoorbeeld om de kwaliteit, gastvrijheid en inclusiviteit te verbeteren zodat iedereen zich welkom voelt op de campus. CD streeft naar een betere aansluiting tussen de ruimte en organisatie op de campus; ook de vergroening en biodiversiteit rekenen we daartoe. Dit doen we door praktijkvragen van onderwijsinstellingen en het bedrijfsleven te koppelen aan praktijkgericht onderzoek van onze senior-onderzoekers, onderzoekers, docenten en studenten, onder meer in architectuur, facility management, gastvrijheid, kunsten en vastgoed. Onze multidisciplinaire aanpak is zeer actiegericht; we willen de campuspraktijk écht veranderen en laten zien dat het betaalbaar is én werkt. We zorgen er dus voor dat oplossingen niet alleen theoretisch en empirisch uitstekend onderbouwd zijn, maar vooral ook praktisch toepasbaar en bewijsbaar beter. Door de goede samenwerking met onze partners, genereert CD oplossingen die onderwijsinstellingen inspireren en hen helpen de SDG te implementeren.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
Green Hydra main scope is to improve policies from 10 regions of different types and levels - national, regional or local - to establish support initiatives and measures for opening the access of SMEs to green H2 development projects, from research programmes to development strategies, awareness-raising schemes, and pilot investments especially focused on involvement of SMEs across the whole hydrogen value chain, including R&D, engineering, manufacturing, consultancy, human resources upskilling and design.The specifc objectives are:- probing the conditions for using green H2 in the key sectors involving SMEs- identifying the potential key factors to activate the involvement of SMEs around the green H2 value chain- supporting for the creation of a production chain involving SMEs- developing new skills, knowledge and communication for green H2 for SMEs- easing SMEs access to fi nance in the fi eld of green H2- upscaling innovations for SMEs related to green H2 products and services