Moral food lab: Transforming the food system with crowd-sourced ethics
LINK
Moral food lab: Transforming the food system with crowd-sourced ethics
LINK
Hoofdstuk 2 uit Position paper Learning Communities van Netwerk learning Communities Grote maatschappelijke uitdagingen op het gebied van vergrijzing, duurzaamheid, digitalisering, segregatie en onderwijskwaliteit vragen om nieuwe manieren van werken, leren en innoveren. In toenemende mate wordt daarom ingezet op het bundelen van kennis en expertise van zowel publieke als private organisaties, die elkaar nodig hebben om te innoveren en complexe vraagstukken aan te pakken. Het concept ‘learning communities’ wordt gezien als dé oplossing om leren, werken en innoveren anders met elkaar te verbinden: collaboratief, co-creërend en contextrijk. Vanuit het Netwerk Learning Communities is een groep onafhankelijk onderzoekers van een groot aantal Nederlandse kennisinstellingen aan de slag gegaan met een kennissynthese rondom het concept ‘Learning Community’. Het Position paper is een eerste aanzet tot kennisbundeling. Een ‘levend document’ dat in de komende tijd verder aangevuld en verrijkt kan worden door onderzoekers, praktijkprofessionals en beleidsmakers.
Het RAAK-MKB project "(G)een Moer Aan" heeft zich gericht op het ontwerpen van een veilige en effectieve ondersteuning van een cobot in een productieomgeving. De focus is hierbij gelegd op productiehandelingen die in veel sectoren voorkomen en die relatief veel arbeidstijd kosten, zoals het indraaien van moeren en bouten in een object. Binnen het project is veel kennis opgedaan dit heeft geresulteerd in gripperontwerpen die in staat zijn een bout in een flens te draaien. Daarnaast is kennis gegeneerd van vision technieken om gaten e.d. te detecteren, en het meenemen van (beleefde) veiligheid in het ontwerp van een cobot systeem. Deze nieuw opgedane kennis is erg bruikbaar voor zowel de beroepspraktijk als voor de studenten in het onderwijs. Dat maakt het relevant voor (her)gebruik middels het nieuwe open-acces e-learning platform van Fontys: Open Learning Labs. Door trainingsmateriaal te ontwikkelen dat betrekking heeft op onder andere het aspect veilig ontwerpen, worden toekomstige engineers (de studenten) en zittend personeel bij bedrijven bekend met nieuwe technieken die toepasbaar zijn in diverse sectoren waar met robots gewerkt wordt. Het doel van deze Top-up aanvraag is tweeledig: 1) Het vergroten van de zichtbaarheid van de resultaten uit het initiële RAAK-project, zowel richting onderwijs, onderzoek en beroepspraktijk. 2) Het realiseren van trainingsmateriaal t.b.v. het rekening houden met en veilig ontwerpen van cobotsystemen. Door o.a. kennis aan te dragen omtrent het doen van een correcte risico analyse van het proces. Dit zal bij toekenning stapsgewijs uitgevoerd worden: 1. Definiëren inhoud lesmodules en bijbehorende didactische werkvormen 2. Realisatie PR- & instructievideo's en onderwijsopdrachten 3. Realisatie E-learning lesmodule Dit alles gekoppeld aan het open-acces e-learning platform Open Learning Labs van Fontys.
De 2SHIFT SPRONG-groep is een samenwerkingsverband van HAN University of Applied Sciences en Fontys Hogescholen. Onze ambitie is het vergroten van eerlijke kansen op gezond leven. Dit doen we door het vormgeven en versterken van gemeenschappen als fundament voor het creëren van eerlijke kansen op gezond leven. Vanuit deze gemeenschappen wordt in co-creatie gewerkt aan structuur (i.e. systeem), sociale en technologische innovaties. Deze ambitie sluit aan bij de centrale missie KIA Gezondheid en Zorg om bij te dragen aan goede gezondheid en het verkleinen van sociaaleconomische gezondheidsverschillen. Ook draagt het bij aan deelmissie 1. het voorkomen van ziekte, waarbij wij uitgaan van het concept Positieve Gezondheid en Leefomgeving. Én het zorgt voor het verplaatsen van ondersteuning en zorg naar de leefomgeving (deelmissie 2), doordat gemeenschappen hiervoor een stevig fundament vormen. De gemeenschap is geoperationaliseerd als een samenwerking tussen inwonersinitiatieven (i.e. informele actoren) én professionals vanuit wonen, welzijn, zorg en gemeenten (i.e. formele actoren) die bestuurlijk en beleidsmatig worden ondersteund. Toenemend wordt een belangrijke rol en meer verantwoordelijkheid toebedeeld aan inwoners en wordt de noodzaak van sectoroverstijgende, inclusieve samenwerking tussen deze actoren in lokale fieldlabs benadrukt. 2SHIFT start daarom in vier fieldlabs: twee dorpen en twee wijken in (midden-)stedelijke gebieden, waar in vergelijking met groot-stedelijk gebied (zoals Amsterdam, Rotterdam, Den Haag en Utrecht) andere dynamieken en mechanismen een rol spelen bij het creëren van eerlijke kansen op een gezond leven. Om impact in onderwijs en praktijk te realiseren werken we nauw samen met studenten, docenten én met inwoners, professionals, bestuurders en beleidsmakers uit wonen, welzijn, zorg en gemeenten én landelijke kennispartners (“quadruple helix”). 2SHIFT brengt transdisciplinaire expertise én verschillende onderzoeksparadigma’s samen in een Learning Community (LC), waarin bestaande kennis en nieuwe kennis wordt samengebracht en ontwikkeld. Over 8 jaar is 2SHIFT een (inter)nationaal erkende onderzoeksgroep die het verschil maakt.
Aaltjes: automatisch classificeren en tellen. Agrariërs laten bodemmonsters analyseren op onder meer aanwezigheid van aaltjes. Deze bodemanalyse is voor agrariërs cruciaal om de bodemgezondheid- en vruchtbaarheid vast te stellen maar behelst een grote kostenpost. Het identificeren, analyseren en tellen van aaltjes (nematoden) in een bodemmonster geschiedt in een gespecialiseerd laboratorium. Dit is tijdrovend, specialistisch en seizoensgebonden werk. Het tellen- en analyseren van aaltjes is mensenwerk en vergt training en ervaring van de laborant. Daarnaast hebben de laboratoria te maken met personeelstekort en de laboranten met sterk fluctuerende werkdruk. Derhalve is het speciaal voor dit project opgerichte samenwerkingsverband tussen Fontys GreenTechLab, ROBA Laboratorium en CytoSMART voornemens om een oplossing te ontwikkelen voor het automatisch classificeren en tellen van aaltjes. Dit project richt zich op de ontwikkeling van een proof of concept van een analysescanner. Het werk van de laboranten wordt grotendeels geautomatiseerd waarbij door de scanner de bodemmonsters middels toepassing van deep learning en virtual modeling kan worden geanalyseerd. Daarmee wordt beoogd een oplossing te bieden waarmee het personeelstekort wordt tegengegaan, de werkdruk kan worden verlaagd, mensenwerk wordt geautomatiseerd (waardoor de kans op fouten wordt verkleind) en de kosten voor agrariërs worden verlaagd.