Service of SURF
© 2025 SURF
This report is intended to collect, present, and evaluate the various solutions applied in individual operational pilots for their (upscaling and transnational transfer) potential, in terms of opportunities and barriers, over the short and long(er)-term. This is done by identifying the main characteristics of the solutions and sites and the relevant influencing factors at different local (dimension) contexts.The analysis provides insights in barriers but also opportunities and conditions for success across four main dimensions that make up the local context landscape. We consider two main roll-out scenarios:1. Upscaling within the boundaries of the country where the operational pilot (OP) took place2. Transnational Transfer relates to the potential for transferring a (V4)ES solution to any of the other three (project) countriesThere are several aspects within the four main dimensions that are cross-cutting for all four countries, either because EU legislation lies at its roots, or because market conditions are fairly similar for certain influencing factors in those dimension.Ultimately, both Smart Charging and V2X market are still in their relevant infancies. The solutions applied in various SEEV4-City pilots are relatively straightforward and simple in ‘smartness’. This helps the potential for adoption but may not always be the optimal solution yet. The Peak shaving or load/demand shifting solutions are viable options to reduce costs for different stakeholders in the (electricity) supply chain. The market is likely to mature and become much smarter in coming 5 – 10 years. This also includes the evolvement (or spin-offs) of the solutions applied in SEEV4-_City as well. At least in the coming (approximately) 5 years Smart Charging appears to have the better financial business case and potential for large scale roll-out with less (impactful) bottlenecks, but looking at longer term V2X holds its potential to play a significant role in the energy transition.A common denominator as primary barriers relates to existing regulation, standards readiness and limited market availability of either hardware or service offerings.
The upscaling of biphasic photochemical reactions is challenging because of the inherent constraints of liquid-gas mixing and light penetration. Using semi-permeable coaxial flow chemistry within a modular photoreactor, the photooxidation of the platform chemical furfural was scaled up to produce routinely 29 gram per day of biobased building block hydroxybutenolide, a precursor to acrylate alternatives.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.
DISCO aims at fast-tracking upscaling to new generation of urban logistics and smart planning unblocking the transition to decarbonised and digital cities, delivering innovative frameworks and tools, Physical Internet (PI) inspired. To this scope, DISCO will deploy and demonstrate innovative and inclusive urban logistics and planning solutions for dynamic space re-allocation integrating urban freight at local level, within efficiently operated network-of-networks (PI) where the nodes and infrastructure are fixed and mobile based on throughput demands. Solutions are co-designed with the urban logistics community – e.g., cities, logistics service providers, retailers, real estate/public and private infrastructure owners, fleet owners, transport operators, research community, civil society - all together moving a paradigm change from sprawl to data driven, zero-emission and nearby-delivery-based models.
The program is structured in five tasks, of which three are technical by nature and two are on integration and enabling aspects. The technical tasks are infrastructure, offshore and large-scale storage of hydrogen. The enabling task is safety, standardization and regulation, which is a key boundary condition for the successful development of a hydrogen infrastructure. As overarching task the aspect of upscaling and system integration is analysed. Both the enabling and overarching tasks are strongly linked to the technical tasks and require active interaction between those tasks to be successful. Our consortium enables productive interactions by facilitating knowledge sharing, joint research projects, technology transfer, policy advocacy, public engagement, and standardization efforts. These interactions not only enhance the research and development outcomes within the consortium but also contribute to the broader societal and economic benefits of a hydrogen-based energy transition.