ackground and aim – Driven by new technologies and societal challenges, futureproof facility managers must enable sustainable housing by combining bricks and bytes into future-proof business support and workplace concepts. The Hague University of Applied Sciences (THUAS) acknowledges the urgency of educating students about this new reality. As part of a large-scale two-year study into sustainable business operations, a living lab has been created as a creative space on the campus of THUAS where (novel) business activities and future-proof workplace concepts are tested. The aim is to gain a better understanding amongst students, lecturers, and the university housing department of bricks, bytes, behavior, and business support. Results – Based on different focal points the outcomes of this research present guidelines for facility managers how data-driven facility management creates value and a better understanding of sustainable business operations. In addition, this practice based research presents how higher education in terms of taking the next step in creating digitized skilled facility professionals can add value to their curriculum. Practical or social implications – The facility management profession has an important role to play in the mitigation of sustainable and digitized business operations. However, implementing high-end technology within the workplace can help to create a sustainable work environment and better use of the workplace. These developments will result in a better understanding of sustainable business operations and future-proof capabilities. A living lab is the opportunity to teach students to work with big data and provides a playground for them to test their circular workplace, business support designs, and smart building technologies.
ackground and aim – Driven by new technologies and societal challenges, futureproof facility managers must enable sustainable housing by combining bricks and bytes into future-proof business support and workplace concepts. The Hague University of Applied Sciences (THUAS) acknowledges the urgency of educating students about this new reality. As part of a large-scale two-year study into sustainable business operations, a living lab has been created as a creative space on the campus of THUAS where (novel) business activities and future-proof workplace concepts are tested. The aim is to gain a better understanding amongst students, lecturers, and the university housing department of bricks, bytes, behavior, and business support. Results – Based on different focal points the outcomes of this research present guidelines for facility managers how data-driven facility management creates value and a better understanding of sustainable business operations. In addition, this practice based research presents how higher education in terms of taking the next step in creating digitized skilled facility professionals can add value to their curriculum. Practical or social implications – The facility management profession has an important role to play in the mitigation of sustainable and digitized business operations. However, implementing high-end technology within the workplace can help to create a sustainable work environment and better use of the workplace. These developments will result in a better understanding of sustainable business operations and future-proof capabilities. A living lab is the opportunity to teach students to work with big data and provides a playground for them to test their circular workplace, business support designs, and smart building technologies.
The purpose of this study was to analyse knowledge management research trends to understand the development of the field using a combination of scientometric, bibliometric, and visualisation techniques, subsequently developing a normative framework of knowledge management from the results.282 articles between the years 2010–2015 were retrieved, analysed, and visualised to produce the state of knowledge management during the selected timeframe. The results of this study provide a visualisation of the current research trends to understand the development of the knowledge management discipline. There are signals that the literature about knowledge management is progressing towards academic maturity. This study is one of the first studies to combine bibliometric and scientometric methods to assess productivity along with visualisation, and subsequently provide a knowledge management framework drawing from the results of these methods.
MULTIFILE
In June 2016, two Dutch SME companies which are active in the area of urban solid waste management approached the International Environmental Sciences department of Avans about the current R&D activities on urban solid waste management in cooperation with the Federal University of Minas Gerais (UFMG) Brazil. The companies had interest in developing activities in Brazil, since they are aware of the great potential for exporting both knowledge and technology. Solid waste poses a major problem in Brazil which affects 200 million residents. The Brazilian municipalities collect around 71 million tons solid municipal waste on a yearly basis and only a tiny percentage of this collected waste gets recycled. As such. the overwhelming majority of the collected urban solid waste goes to landfills. Within the State of Minas Gerais there are 850 towns of which 600 have less than 20.000 residents and are agriculturally oriented. Current organic waste composting practices take place under very poor conditions (pathogens and weeds still remain in the compost) and most often the resulting compost product is not well received by its residential and agricultural consumers. As such there is huge room for improvement. The SME companies work with Avans and UFMG to address these challenges. The joint research team consisting of the two Dutch SME companies and the two Research and educational institutes have defined the following research question: What is the current status of organic solid waste management in Minas Gerais and how can cooperation between Brazil and the Netherlands result in a win-win for both countries? Two individual KIEM VANG proposals have been defined in order to address these challenges. The planned activities are a joint effort with professor R. T. de Vasconcelos Barros of the Universidade Federal de Minas Gerais (UFMG) and are executed within the Living Lab Biobased Brazil program (www.biobasedbrazil.org).
Climate change adaptation has influenced river management through an anticipatory governance paradigm. As such, futures and the power of knowing the future has become increasingly influential in water management. Yet, multiple future imaginaries co-exist, where some are more dominant that others. In this PhD research, I focus on deconstructing the future making process in climate change adaptation by asking ‘What river imaginaries exist and what future imaginaries dominate climate change adaptation in riverine infrastructure projects of the Meuse and Magdalena river?’. I firstly explore existing river imaginaries in a case study of the river Meuse. Secondly, I explore imaginaries as materialised in numerical models for the Meuse and Magdalena river. Thirdly, I explore the integration and negotiation of imaginaries in participatory modelling practices in the Magdalena river. Fourthly, I explore contesting and alternative imaginaries and look at how these are mobilised in climate change adaptation for the Magdalena and Meuse river. Multiple concepts stemming from Science and Technology Studies and Political Ecology will guide me to theorise the case study findings. Finally, I reflect on my own positionality in action-research which will be an iterative process of learning and unlearning while navigating between the natural and social sciences.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.