Service of SURF
© 2025 SURF
This report describes the creation and use of a database for energy storage technologies which was developed in conjunction with Netbeheer Nederland and the Hanze University of Applied Sciences. This database can be used to make comparisons between a selection of storage technologies and will provide a method for ranking energy storage technology suitability based on the desired application requirements. In addition, this document describes the creation of the energy storage label which contains detailed characteristics for specific storage systems. The layout of the storage labels enables the analysis of different storage technologies in a comprehensive, understandable and comparative manner. A sampling of storage technology labels are stored in an excel spreadsheet and are also compiled in Appendix I of this report; the storage technologies represented here were found to be well suited to enable flexibility in energy supply and to potentially provide support for renewable energy integration [37] [36]. The data in the labels is presented on a series of graphs to allow comparisons of the technologies. Finally, the use and limitations of energy storage technologies are discussed. The results of this research can be used to support the Dutch enewable Energy Transition by providing important information regarding energy storage in both technically detailed and general terms. This information can be useful for energy market parties in order to analyze the role of storage in future energy scenarios and to develop appropriate strategies to ensure energy supply.
MULTIFILE
With increased share of energy generated from variable renewable sources, storagebecomes a critical issue to ensure constantly balanced supply/demand.Methane is a promising vector for energy storage and transport.
The increase in renewable energy sources will require an increase in the operational flexibility of the grid, due to the intermittent nature of these sources. This can be achieved for the gas and the electricity grid, which are integrated by means of power-to-gas and vice versa, by applying gas and other energy storages. Because renewables are applied on a decentralized scale level and syngas and biogas are produced at relatively low pressures, we study the application of a decentralized (bio)gas storage system combined withMicro Turbine Technology (MTT), Compressed Air Energy Storage (CAES) and Thermal Energy Storage (TES) units, which are designed to optimize energy efficiency.In this study we answer the following research questions:a. What is the techno-economical feasibilty of applying a decentralized (bio)gas storage with a MTT/CAES/TES system to balance the integrated renewable energy network?b. How should the decentralized (bio)gas storage with MTT/CAES/TES system be designed, so that the energy efficient application in such networks is optimized?Note that:c. We verify the calculations for the small scale MTT unit with measurements on our proof-of-principle set-up of part of the system that includes two MTTs in parallel.Based on wind speed, irradiance patterns and electricity and heat demand patterns for a case of 100 households, we found the optimum dimensions for the decentralized (bio)gas storage based on guaranteed supply. We concluded that a decentralized (bio)gas storage of 85 000 Nm3 was needed to provide the heat demand. LNG was the most energy efficient storage technology for such dimensions.The use of (bio)gas directly in a CHP (P/Q ratio = 2/3) that was mainly heat driven, resulted in a continuous overproduction of electricity due to the dominant heat demand of the 100 households in the Netherlands.This does not leave any room for the increase in the application of PV and wind generators, nor is there a purpose for electricity storage.For that reason we will further investigate the application of a decentralized (bio)gas storage with MTT/CAES/TES as a solution to balance a renewable integrated network. Using an MTT in the system offers a more useful P/Q ratio for households of 1/5.
Wat is de mogelijke rol van lokale duurzame energiesystemen en –initiatieven in de overgang naar een duurzame samenleving? En hoe kunnen op lokale toepassing gerichte innovaties worden ontwikkeld en toegepast op een zodanige manier dat deze bij lokale systemen en initiatieven aansluiten?Deze vragen staan centraal in dit onderzoeksproject dat zich richt op innovaties die rekening houden met een grotere rol van burgers bij een duurzame energievoorziening. Het project behelst echter meer dan het verrichten van onderzoek. Het beoogt bouwstenen te leveren voor een duurzame samenleving waarin meer ruimte is voor lokale (burger)initiatieven. We stellen drie deelprojecten voor:1. een vergelijkende studie naar energiecoöperaties en vergelijkbare innovatieve initiatieven, binnen en buiten Nederland, in heden en verleden. Daarbij hopen we lering te kunnen trekken uit de succesvolle ervaringen in Denemarken en Oostenrijk en van innovaties door coöperatiesen collectieven in het verleden.2. een analyse van energie-innovaties die beogen aan te sluiten bij lokale energiesystemen. Concreet zal het onderzoek zich richten op speciale batterijen, ontwikkeld dor het bedrijf Dr.Ten, en een soort slimme grote zoneboiler, ontwikkeld door het gelijknamige bedrijf Ecovat.3. De ontwikkeling van drie scenario’s, gebaseerd op inzichten uit studies 1 en 2. De scenario’s zullen bijvoorbeeld inhoudelijk verschillen in de mate waarin deze geïntegreerd zijn in bestaande energiesystemen. Deze zullen worden ontwikkeld en besproken met relevante stakeholders.Het onderzoek moet leiden tot een nauwkeurig overzicht van de mate van interesse en betrokkenheid van stakeholders en van de beperkingen en mogelijkheden van lokale energiesystemen en daarbij betrokken technologie. Ook leidt het tot een routemap voor duurzame energiesystemen op lokaal niveau. Het project heeft een technisch aspect, onderzoek naar verfijning en ontwikkeling van de technologie en een sociaal en normatief aspect, studies naar aansluitingsmogelijkheden bij de wensen en mogelijkheden van burgers, instanties en bedrijven in Noord-Nederland. Bovenal is het integratief en ontwerpend van karakter.This research proposal will explore new socio- technical configurations of local community-based sustainable energy systems. Energy collectives successfully combine technological and societal innovations, developing new business and organization models. A better understanding of their dynamics and needs will contribute to their continued success and thereby contribute to fulfilling the Top Sector’s Agenda. This work will also enhance the knowledge position of the Netherlands on this topic. Currently, over 500 local energy collectives are active in The Netherlands, many of them aim to produce their own sustainable energy, with thousands more in Europe. These collectives search for a new more local-based ways of organizing a sustainable society, including more direct democratic decision-making and influence on local living environment. The development of the collectives is enabled by openings in policy but –evenly important - by innovations in local energy production technologies (solar panels, windmills, biogas installations). Their future role in the sustainable energy transition can be strengthened by careful aligning new organizational and technological innovations in local energy production, storage and smart micro-grids.
In Gelderland at industriepark Kleefsewaard, a prominent knowledge hub for hydrogen technology has been developed, featuring key industry players and research groups contributing to innovative and cost-effective hydrogen technologies. However, the region faces a challenge in the lack of available test equipment for hydrogen innovations. In Anion Exchange Membrane (AEM) technology, a route to follow is to create hydrogen more efficiently with stacks that can operate under high pressure (50 bar – 200 bar). This results in compact hydrogen storage. Research must be done to understand crossover effects which become more apparent at these high pressure conditions. The overall goal is to design a Balanced of Plant (BOP) system, incorporating Process Flow Diagram (PFD) and Piping & Instrumentation Diagram (P&ID) elements, alongside hydrogen purification systems and gas-liquid separators, for a test setup operating AEM stacks at 200 bar. De Nooij Stainless contributes by designing and fabricating a gas liquid separator, addressing challenges such as compatibility, elevated temperatures, and hydrogen safety. ON2Quest collaborates in supporting the design of a hydrogen purification system and the Balance of Plant (BoP), ensuring flexibility for testing future stacks and hydrogen purification components. HyET E-Trol specializes in high pressure (up to 200 bar) AEM electrolyser stacks and is responsible for providing problem statements and engineering challenges related to the (Balanced of Plant) BoP of AEM systems, and contributes in solving them. Subsequent projects will feature test sequences centered on other stacks, allowing for testing stacks from other companies. The resulting framework will provide a foundation for ongoing advancements, with contributions from each partner playing a crucial role in achieving the project's goals.
Positive Energy Districts (PEDs) can play an important part in the energy transition by providing a year-round net positive energy balance in urban areas. In creating PEDs, new challenges emerge for decision-makers in government, businesses and for the public. This proposal aims to provide replicable strategies for improving the process of creating PEDs with a particular emphasis on stakeholder engagement, and to create replicable innovative business models for flexible energy production, consumption and storage. The project will involve stakeholders from different backgrounds by collaborating with the province, municipalities, network operators, housing associations, businesses and academia to ensure covering all necessary interests and mobilise support for the PED agenda. Two demo sites are part of the consortium to implement the lessons learnt and to bring new insights from practice to the findings of the project work packages. These are 1), Zwette VI, part of the city of Leeuwarden (NL), where local electricity congestion causes delays in building homes and small industries. And 2) Aalborg East (DK), a mixed-use neighbourhood with well-established partnerships between local stakeholders, seeking to implement green energy solutions with ambitions of moving towards net-zero emissions.