The aim of this paper is to design and test a smartphone application which supports personalized running experiences for less experienced runners. As a result of a multidisciplinary three-step design approach Inspirun was developed. Inspirun is a personalized running-application for Android smartphones that aims to fill the gap between running on your own (static) schedule, and having a personal trainer that accommodates the schedule to your needs and profile. With the use of GPS and Bluetooth heart rate monitor support, a user's progress gets tracked. The application adjusts the training schedule after each training session, motivating the runner without a real life coach. Results from three user studies are promising; participants were very satisfied with the personalized approach, both in the profiling and de adaptation of their training scheme.
The aim of this paper is to design and test a smartphone application which supports personalized running experiences for less experienced runners. As a result of a multidisciplinary three-step design approach Inspirun was developed. Inspirun is a personalized running-application for Android smartphones that aims to fill the gap between running on your own (static) schedule, and having a personal trainer that accommodates the schedule to your needs and profile. With the use of GPS and Bluetooth heart rate monitor support, a user's progress gets tracked. The application adjusts the training schedule after each training session, motivating the runner without a real life coach. Results from three user studies are promising; participants were very satisfied with the personalized approach, both in the profiling and de adaptation of their training scheme.
In the Netherlands and in the United States, the assessment process is changing for children who present learning and behavioural challenges in school. Evaluations for eligibility determinations and support planning are shifting along with disability models and tensions over the provision of inclusive schooling. Legislative edicts influence the assessment process differently in these two countries while both nations seem to be headed in a similar direction. This paper relates evolving disability models to the changing assessment process in each country and proposes that a solution-focused perspective offers an assessment concept which supports the goal of inclusive education. Specifically discussed are the implications of a solution-focused approach on the identification of disability, the assessment of special educational needs, individualized support planning, and the essential cooperation within evolving schools as well as the environment beyond.
Designing cities that are socially sustainable has been a significant challenge until today. Lately, European Commission’s research agenda of Industy 5.0 has prioritised a sustainable, human-centric and resilient development over merely pursuing efficiency and productivity in societal transitions. The focus has been on searching for sustainable solutions to societal challenges, engaging part of the design industry. In architecture and urban design, whose common goal is to create a condition for human life, much effort was put into elevating the engineering process of physical space, making it more efficient. However, the natural process of social evolution has not been given priority in urban and architectural research on sustainable design. STEPS stems from the common interest of the project partners in accessible, diverse, and progressive public spaces, which is vital to socially sustainable urban development. The primary challenge lies in how to synthesise the standardised sustainable design techniques with unique social values of public space, propelling a transition from technical sustainability to social sustainability. Although a large number of social-oriented studies in urban design have been published in the academic domain, principles and guidelines that can be applied to practice are large missing. How can we generate operative principles guiding public space analysis and design to explore and achieve the social condition of sustainability, developing transferable ways of utilising research knowledge in design? STEPS will develop a design catalogue with operative principles guiding public space analysis and design. This will help designers apply cross-domain knowledge of social sustainability in practice.
Carboxylated cellulose is an important product on the market, and one of the most well-known examples is carboxymethylcellulose (CMC). However, CMC is prepared by modification of cellulose with the extremely hazardous compound monochloracetic acid. In this project, we want to make a carboxylated cellulose that is a functional equivalent for CMC using a greener process with renewable raw materials derived from levulinic acid. Processes to achieve cellulose with a low and a high carboxylation degree will be designed.
Size measurement plays an essential role for micro-/nanoparticle characterization and property evaluation. Due to high costs, complex operation or resolution limit, conventional characterization techniques cannot satisfy the growing demand of routine size measurements in various industry sectors and research departments, e.g., pharmaceuticals, nanomaterials and food industry etc. Together with start-up SeeNano and other partners, we will develop a portable compact device to measure particle size based on particle-impact electrochemical sensing technology. The main task in this project is to extend the measurement range for particles with diameters ranging from 20 nm to 20 um and to validate this technology with realistic samples from various application areas. In this project a new electrode chip will be designed and fabricated. It will result in a workable prototype including new UMEs (ultra-micro electrode), showing that particle sizing can be achieved on a compact portable device with full measuring range. Following experimental testing with calibrated particles, a reliable calibration model will be built up for full range measurement. In a further step, samples from partners or potential customers will be tested on the device to evaluate the application feasibility. The results will be validated by high-resolution and mainstream sizing techniques such as scanning electron microscopy (SEM), dynamic light scattering (DLS) and Coulter counter.