Service of SURF
© 2025 SURF
Sedimentation devices have been widely implemented to remove suspended solids and attached pollutants from stormwater before entering surface waters. The treatment performance of these best management practices (BMPs) on fine particles is rarely investigated in a standardized way. To overcome this information gap a reliable and standardized testing procedure is formulated.Four devices have been tested on their suspended sediments removal efficiency at different discharges and particle sizes, using the newly developed standardized full scale test method. The observed removal rates of the facilities with a storage volume in the order of 1.5 m3 and settling surface around 1 m2 drop to low removal efficiencies at flow rates of 10 l/s or more. For small sized sediments (up to 63 μm) the removal efficiency is below 50%. The results of the experiments can be used to improve both the design and the dimensions of stormwater treatment devices.
LINK
In recent years, there has been a steady increase in the number of bioretention systems installed worldwide. However, there has only been limited research on the long-term effectiveness of these sustainable urban drainage system devices. This paper presents the results of a series of controlled field experiments investigating the pollutant removal efficiency of three bio-filtration system that have been in service for over five years in the Sunshine Coast in Australia. The results of this study suggest that the long-term pollution removal performance of these systems may not be as effective as previously thought and further research is needed.
Energy efficiency has gained a lot of prominence in recent debates on urban sustainability and housing policy due to its potential consequences for climate change. At the local, national and also international level, there are numerous initiatives to promote energy savings and the use of renewable energy to reduce the environmental burden. There is a lot of literature on energy saving and other forms of energy efficiency in housing. However, how to bring this forward in the management of individual housing organisations is not often internationally explored. An international research project has been carried out to find the answers on management questions of housing organisations regarding energy efficiency. Eleven countries have been included in this study: Germany, the United Kingdom (more specifically: England), France, Sweden, Denmark, the Netherlands, Switzerland, Slovenia, the Czech Republic, Austria and Canada. The state of the art of energy efficiency in the housing management of non-profit housing organisations and the embedding of energy efficiency to improve the quality and performance of housing in management practices have been investigated, with a focus on how policy ambitions about energy efficiency are brought forward in investment decisions at the estate level. This paper presents the conclusions of the research
Circularity represents an innovative approach to sustainability, aiming to transition from linear systems to cyclical ones by minimizing waste and optimizing resource utilization. Key to this concept is the repurposing of waste into valuable resources, which not only reduces environmental impact but also fosters innovation and produces further value. By utilizing their own waste, organizations can not only decrease their ecological footprint but also promote the development of materials with enhanced circularity thus mitigating environmental harm. Embracing circular practices provides a tangible pathway towards harmonizing human activities with the natural world, nurturing a regenerative global ecosystem. In a concerted effort to tackle biomass waste generated from JvEsch's operations, a strategic partnership with MNEXT is forged. This collaboration endeavours not only to replace unsustainable materials but also to enhance operational efficiency. Central to this initiative is a one-year research feasibility project which focuses on upcycling JvEsch’s biomass waste into valuable products for use in their business model. By examining JvEsch's waste streams, opportunities for the production of alternative materials were being explored. Among these materials, mycelium biocomposites (MBCs) emerge as a promising option for waste reduction and material innovation. The primary objective of this project is to explore the viability of manufacturing and utilizing MBC plant pots using JvEsch's waste. Unlike conventional pots, these innovative alternatives eliminate the need for removal before planting. Through replacing traditional plastic pots commonly used in the industry, the investigation aims to practically demonstrate the transformative potential of circularity in waste management and material production within an organization.
The postdoc candidate, Sondos Saad, will strengthen connections between research groups Asset Management(AM), Data Science(DS) and Civil Engineering bachelor programme(CE) of HZ. The proposed research aims at deepening the knowledge about the complex multidisciplinary performance deterioration prediction of turbomachinery to optimize cleaning costs, decrease failure risk and promote the efficient use of water &energy resources. It targets the key challenges faced by industries, oil &gas refineries, utility companies in the adoption of circular maintenance. The study of AM is already part of CE curriculum, but the ambition of this postdoc is that also AM principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop an AM material science line and will facilitate applied research experiences for students, in collaboration with engineering companies, operation &maintenance contractors and governmental bodies. Consequently, a new generation of efficient sustainability sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment being more sustainable with less CO2 footprint, with possible connections with other fields of study, such as Engineering, Economics &Chemistry. The project is also strongly contributing to the goals of the National Science Agenda(NWA), in themes of “Circulaire economie en grondstoffenefficiëntie”,”Meten en detecteren: altijd, alles en overall” &”Smart Industry”. The final products will be a framework for data-driven AM to determine and quantify key parameters of degradation in performance for predictive AM strategies, for the application as a diagnostic decision-support toolbox for optimizing cleaning &maintenance; a portfolio of applications &examples; and a new continuous learning line about AM within CE curriculum. The postdoc will be mentored and supervised by the Lector of AM research group and by the study programme coordinator(SPC). The personnel policy and job function series of HZ facilitates the development opportunity.
Living walls are increasingly becoming tools for green climate adaptation in the urban context, but distribution efforts are dampened by high investment and operational costs. Those costs are derived mainly from designing and manufacturing unique equipment for such new projects. A system using wastewater could relieve some of these costs by decreasing their irrigation and fertigation needs. Muuras is developing helophyte filters integrated into living wall systems that can readily be attached to any wall surface, with the ultimate purpose of local water recycling. Additionally, based on the fact that Muuras is a pre-engineered company, their product is modular, which means that a considerable advantage is recognized regarding the decreased capital cost. To realize scalable implementation of such a system, research with regards to the purification capabilities of lightweight substrates and small wetland plant species is imperative. In SoW & FloW, the NHL Stenden Water Technology Professorship proposes a collaboration between two SME’s (Muuras, Greenwave Systems) and a company (DeSaH), to evaluate a selection of substrates and endemic plant species based on their capability to use domestic wastewater as an irrigation source.