Service of SURF
© 2025 SURF
Bij Hogeschool Utrecht is het concept Leven Lang Leren leidend voor het onderwijs. De keuze daarvoor heeft grote gevolgen voor de organisatie. Jaarlijks vallen er opleidingen af en komen er nieuwe bij. Ook het kwaliteitsbeleid is geheel vernieuwd. Het beleid richt zich niet alleen meer op de kwaliteit van afzonderlijke opleidingen, maar ook op de actualiteit en relevantie en van het assortiment. In het artikel laten we zien hoe onderwijsinnovatie en kwaliteitsbeleid elkaar versterken
Iedereen heeft een onderwijsvisie! Iedereen die in het onderwijs werkt zou het zich als professional tot taak moeten stellen om zichzelf regelmatig 'visievragen' te stellen en die met collega's te bespreken in relatie tot eigen onderwijs. Dat geeft een stevige basis voor goed onderwijs, het verantwoorden, zo nodig verdedigen, en het verder ontwikkelen van goed onderwijs op basis van inhoudelijke standpunten. Met voorbeelden vanuit de lerarenopleiding voor vo/bve hoe hieraan concreet te werken.
Bij Hogeschool Utrecht is het concept Leven Lang Leren leidend voor het onderwijs. De keuze daarvoor heeft grote gevolgen voor de organisatie. Jaarlijks vallen er opleidingen af en komen er nieuwe bij. ‘Door samenwerking met de beroepspraktijk en door hoogwaardig onderwijs en onderzoek krijgt de wereld van morgen vorm en inhoud.’
Het analyseren van grote gegevensbestanden om de kwaliteit van het onderwijs te verbeteren is een hot item. De toepassing van learning analytics kan het onderwijs verbeteren. Wij doen onderzoek naar learning analytics en de vaardigheden die gebruikers daarbij nodig hebben.Doel Wij onderzoeken wat de gevolgen zijn van databewerking op de uitkomsten van learning analytics. En welke vaardigheden hebben gebruikers nodig om deze systemen zinvol te gebruiken? Learning analytics Learning analytics is het meten, verzamelen, analyseren en rapporteren van data van studenten en hun omgeving om het leren en de leeromgeving te begrijpen en te verbeteren. Het gebruik van learning analyticssystemen Het realiseren van grote delen van de onderwijsvisie van Hogeschool Utrecht is sterk verbonden met de succesvolle uitvoering van analyses op studentniveau. Het gebruik van learning analyticssystemen is niet vanzelfsprekend. De ontwerpers en ontwikkelaars van deze systemen moeten helder zijn over hun ontwerpkeuzes (zoals manieren van databewerking en de werking van algoritmes). Anderzijds moeten studenten en docenten beschikken over datavaardigheden om deze systemen op een zinvolle manier te gebruiken. Resultaten Dit onderzoek loopt. Na afloop vind je hier een samenvatting van de resultaten. In juli 2019 verscheen het volgende artikel van de onderzoekers: Automated Feedback for Workplace Learning in Higher Education. Looptijd 01 september 2017 - 31 december 2020 Aanpak We hebben eerst verkennend onderzoek gedaan door een case study waarin onderzocht is wat de effecten zijn van verschillende keuzes in de data cleaning op de uitkomsten van de data-analyse. Vanaf september 2019 gaan we onderzoeken welke datavaardigheden studenten nodig hebben om learning analytics-systemen effectief te gebruiken.
Het analyseren van grote gegevensbestanden om de kwaliteit van het onderwijs te verbeteren is een hot item. De toepassing van learning analytics kan het onderwijs verbeteren. Wij doen onderzoek naar learning analytics en de vaardigheden die gebruikers daarbij nodig hebben.Doel Wij onderzoeken wat de gevolgen zijn van databewerking op de uitkomsten van learning analytics. En welke vaardigheden hebben gebruikers nodig om deze systemen zinvol te gebruiken? Learning analytics Learning analytics is het meten, verzamelen, analyseren en rapporteren van data van studenten en hun omgeving om het leren en de leeromgeving te begrijpen en te verbeteren. Het gebruik van learning analyticssystemen Het realiseren van grote delen van de onderwijsvisie van Hogeschool Utrecht is sterk verbonden met de succesvolle uitvoering van analyses op studentniveau. Het gebruik van learning analyticssystemen is niet vanzelfsprekend. De ontwerpers en ontwikkelaars van deze systemen moeten helder zijn over hun ontwerpkeuzes (zoals manieren van databewerking en de werking van algoritmes). Anderzijds moeten studenten en docenten beschikken over datavaardigheden om deze systemen op een zinvolle manier te gebruiken. Resultaten Dit onderzoek loopt. Na afloop vind je hier een samenvatting van de resultaten. In juli 2019 verscheen het volgende artikel van de onderzoekers: Automated Feedback for Workplace Learning in Higher Education. Looptijd 01 september 2017 - 31 december 2020 Aanpak We hebben eerst verkennend onderzoek gedaan door een case study waarin onderzocht is wat de effecten zijn van verschillende keuzes in de data cleaning op de uitkomsten van de data-analyse. Vanaf september 2019 gaan we onderzoeken welke datavaardigheden studenten nodig hebben om learning analytics-systemen effectief te gebruiken.