Service of SURF
© 2025 SURF
Within European cities, entrepreneurs engage in private and public collaborative initiatives that work towards reducing local solid waste streams (Futurium, 2019). Furniture and interior design products account for nearly 50% of these waste streams, making them a key priority on the EU agenda to prevent climate change (Vanacore et al, 2021). New legislation to extend producer responsibility and reduce waste incineration is developing on a national level (PBL, 2021) and collaborative initiatives for urban upcycling are emerging (Ministerie I&W, 2023; Futurium, 2019). Business models to support upcycling are evolving, but their configuration and effectiveness is little understood.
circular economy as a system change is gaining more attention, reusing materials and products is part of this, but an effective method for repurposing seems to be missing. Repurpose is a strategy which uses a discarded product or its parts in a new product with a different function. Literature on specific design methods for 'repurposing’ is limited and current design methods do not specifically address repurpose driven design. This paper aims to contribute to the literature on repurpose as a circularity strategy by evaluating repurpose driven design processes which are deployed in practice and evaluate to what extend existing design methods are suited for repurpose driven design. Building on a multiple case study two main design approaches are identified. First, a goal-oriented approach in which a client commissions the design studio. Second, a resource-oriented approach in which a discarded product or its components is the starting point of a design process initiated by the designers. Although both approaches follow a more or less standard design process, each intervenes with repurpose specific input at different phases in the design process, depending on the role of the designer. Results show that in order to be able to deal with the inconsistencies of discarded products, specific repurpose-related tools are required for an efficient and effective repurpose driven design process. Future research should address these issues in order to develop comprehensive and practical tools that accommodate the two repurpose driven design approaches.
First Virtual Reality Museum for Migrant Women: creating engagement and innovative participatory design approaches through Virtual Reality Spaces.“Imagine a place filled with important stories that are hard to tell. A place that embodies the collective experience of immigrant women during their temporary stay”. In this project the first museum around immigrant women in Virtual Reality is created and tested. Working with the only migration centre for women in Monterrey, Lamentos Escuchados, project members (professional developers, lecturers, and interior design, animation, media and humanity students) collaborate with immigrant women and the centre officials to understand the migrant women stories, their notion of space/home and the way they inhabit the centre. This VR museum helps to connect immigrant women with the community while exploring more flexible ways to educate architects and interior designers about alternative ways of doing architecture through participatory design approaches.Partners:University of Monterey (UDEM)Lamentos Escuchados
The climate change and depletion of the world’s raw materials are commonly acknowledged as the biggest societal challenges. Decreasing the energy use and the related use of fossil fuels and fossil based materials is imperative for the future. Currently 40% of the total European energy consumption and about 45% of the CO2 emissions are related to building construction and utilization (EC, 2015). Almost half of this energy is embodied in materials. Developing sustainable materials to find replacement for traditional building materials is therefore an increasingly important issue. Mycelium biocomposites have a high potential to replace the traditional fossil based building materials. Mycelium is the ‘root network’ of mushrooms, which acts as a natural glue to bind biomass. Mycelium grows through the biomass, which functions simultaneously as a growth substrate and a biocomposite matrix. Different organic residual streams such as straw, sawdust or other agricultural waste can be used as substrate, therefore mycelium biocomposites are totally natural, non-toxic, biological materials which can be grown locally and can be composted after usage (Jones et al., 2018). In the “Building On Mycelium” project Avans University of Applied Sciences, HZ University of Applied Sciences, University of Utrecht and the industrial partners will investigate how the locally available organic waste streams can be used to produce mycelium biocomposites with properties, which make them suitable for the building industry. In this project the focus will be on studying the use of the biocomposite as raw materials for the manufacturing of furniture or interior panels (insulation or acoustic).
To decrease the environmental impact caused by the construction sector, biobased materials need to be further developed to allow better integration and acceptance in the market. Mycelium composites are innovative products, with intrinsic properties which rise the attention of architects, designers and industrial companies. Until now, research has focused on the mechanical properties of mycelium products. The aim has been improving their mechanical strength, to achieve wider application in the construction sector. Alongside this, to introduce mycelium composites to a wider market, the aesthetic experience of the public also needs to be considered. In the context of this proposal, it is argued that users of biobased products can shift their attitudes towards their surroundings by adjusting to the visual aesthetics within their environment or products they surround themselves with (Hekkert, 1997). This can be further attributed to colours which can be experienced as warm or cold, aggressive or inviting, leading to experiences that may include pleasure or displeasure indicating the future success of the bio based product. Mycelium composites can be used as building materials, but also as interior design materials, therefore visible to its user. It is to determine the appropriate methodologies to confer colour to mycelium composites that the companies Impershield and Dorable came together to form the consortium for the present project. The investigated ways are: 1. Through the preliminary colouring of fibres and their use as substrate for mycelium growth 2. The surface treatment of the final product. The Centre of Expertise BioBased Economy (CoEBBE) and the Centre of Applied Research for Art and Design (CARADT) will be guiding the research through their experience with mycelium composites. This project will lay the basis to enhance visual appearance of mycelium composites, with the utilization of natural pigments, natural paints and coatings.