Service of SURF
© 2025 SURF
In many regions, governments are motivating increased bicycle ridership by designing new and improving existing bicycle infrastructure. Cycle highways are an effective and cost-efficient type of bicycle-specific infrastructure that are designed to provide a functional connection between places where people work, go to school and live. One important element of developing high quality cycle highways is the development of an effective wayfinding system which allows current, potential, and new users to clearly identify and navigate a bicycle network. The wayfinding design standards used for conventional bicycle infrastructure may not be compatible for cycle highways, which encourage cyclists to travel at relatively higher speeds. This may warrant introducing specific wayfinding signage compatible for this new type of bicycle infrastructure. This study uses qualitative analysis including field observations, ride-along videos, and semi-structured interviews, to assess electrically assisted pedal bicycle (e-bike) users' opinions and experiences with wayfinding signage along a pilot cycle highway route located between Tilburg and Waalwijk in the Netherlands. In the summer of 2018, base-line observations and interviews were administered with twelve e-bike users who were unfamiliar with the route to assess their experiences with conventional signage for cyclists before changes were made to the wayfinding system. Follow-up observations were held in the fall, after the installation of two new pilot wayfinding systems that were specifically designed to accommodate cycle highway users. Initial findings suggest that the changes made to the location, size and clarity of the signage improve cyclists' overall experiences, and that cyclists' perceptions of the built environment are important. Specifically, it became easier for users to navigate the route, their overall travel related stress decreased, and several participants perceived shorter travel times. Policy makers and transportation planners are likely to be interested in the results of this study as they reveal how specific improvements to wayfinding along cycle highways not only help improve navigation, but also positively influence cyclists' overall comfort and stress.
MULTIFILE
We present an economic impacts model based on direct expenditures for European cycle routes, originally designed in 2009 as part of a study commissioned by the European Parliament. At its request, the study was updated in 2012, including a refined version of our model which takes some limitations of the former model into account. Our main findings are that cycle tourists’ daily spending is comparable to that of other tourists, and that cycle tourism can contribute significantly in particular to rural economies that have not previously enjoyed mainstream tourism development. (European) cycle tourism thus proves to be useful as an (additional) tool for regional rural development. We arrived at a total estimated direct expenditures in Europe of almost €44 billion (€35 billion from day trips and €8.94 billion from overnight trips). We applied the model to the routes of EuroVelo, the European cycle route network which is currently being developed, showing their considerable economic potential of over €7 billion in direct expenditures. Furthermore, cycle tourism has a far lower negative impact on the environment (in terms of carbon dioxide emissions) than other forms of tourism. Cycle tourism is therefore a good example of a low carbon tourism product which could be developed as a major slow travel opportunity across (rural) Europe.
LINK
This booklet holds a collection of drawings, maps, schemes, collages, artistic impressions etc. which were made by students during an intense design moment in the project (re)CYCLE Limburg, which took place in December 2016. Students of Built Environment, Facility Management, Social Work and Health & Care cooperated in making designs and developing strategies for urban renewal in Kerkrade West (Province of Limburg, the Netherlands). The study focused on the importance of qualitative and shared public spaces. The local community (inhabitants, shopkeepers, entrepreneurs, municipality, housing corporation) was actively engaged by sharing knowledge and information, ideas and opinions. These reflections are part of the Limburg Action Lab (part of the Smart Urban Redesign Research Centre). It engages in research by design on innovative and tactical interventions in public space, that might enhance the identity, sustainability and socio-spatial structure of neighbourhoods.
Over the last couple of years there is a growing interest in the role of the bicycle in Western urban transport systems as an alternative to car use. Cycling not only has positive environmental impacts, but also positive health effects through increased physical activity. From the observation of the Urban Intelligence team that cycling data and information was limited, we have started the development of cycleprint. Cycleprint stands for Cycle Policy Renewal and INnovation by means of tracking Technology with the objective to enable more customer friendly cycle policy.The initial objective of Cycleprint was to translate GPS data into policy relevant insights to enable customer friendly cycle policy. The online toolkit what Cycleprint has become, answers the questions about:-route choice-speeds-delays at intersections -intensities Because of the success of Cycleprint in the Netherlands the range of features is still under development. As a result of the development of Cycleprint the Dutch organized the fietstelweek. In addition to Cycleprint the Urban Intelligence team developed the cyclescan to explore the effects of cycle network enhancement. The project is developed in direct collaboration with the Provincie Noord-Brabant and Metropoolregio Eindhoven to fulfill the ambition to become cycling region of the Netherlands in 2020.
There is increasing interest for the use of Virtual Reality (VR) in the field of sustainable transportation and urban development. Even though much has been said about the opportunities of using VR technology to enhance design and involve stakeholders in the process, implementations of VR technology are still limited. To bridge this gap, the urban intelligence team of NHTV Breda University of Applied Sciences developed CycleSPEX, a Virtual Reality (VR) simulator for cycling. CycleSpex enables researchers, planners and policy makers to shape a variety of scenarios around knowledge- and design questions and test their impact on users experiences and behaviour, in this case (potential) cyclists. The impact of infrastructure enhancements as well as changes in the surrounding built environment can be tested, analysed an evaluated. The main advantage for planners and policy makers is that the VR environment enables them to test scenarios ex-ante in a safe and controlled setting.“The key to a smart, healthy and safe urban environment lies in engaging mobility. Healthy cities are often characterized by high quality facilities for the active modes. But what contributes to a pleasant cycling experience? CycleSPEX helps us to understand the relations between cyclists on the move and (designed) urban environments”
Dutch Cycling Intelligence (DCI) embodies all Dutch cycling knowledge to enhances customer-oriented cycling policy. Based on the data-driven cycle policy enhancement tools and knowledge of the Breda University of Applied Sciences, DCI is the next step in creating a learning community between road authorities, consultants, cycling industry, and knowledge institutes with their students. The DCI consists of three pilars:- Connecting- Accelerating knowledge- Developing knowledgeConnecting There are many stakeholders and specialists in the cycling domain. Specialists with additional knowledge about socio-cultural impacts, geo-special knowledge, and technical traffic solutions. All of these specialists need each other to ensure a perfect balance between the (electric) bicycle, the cyclist and the cycle path in its environment. DCI connects and brings together all kind of different specialists.Accelerating knowledge Many bicycle innovations take place in so-called living labs. Within the living lab, the triple helix collaboration between road authorities the industry and knowledge institutes is key. Being actively involved in state-of-the-art innovations creates an inspiring work and learning environment for students and staff. A practical example of a successful living lab is the cycle superhighway F261 between Tilburg and Waalwijk, where BUAS tested new cycle route signage. Next, the Cycling Lab F58 is created, where the road authorities Breda and Tilburg opened up physical cycling infrastructure for entrepreneurs in the bicycle domain and knowledge institutes to develop e-cycling innovation. The living labs are test environments where pilots can be carried out in practice and an excellent environment for students to conduct scientifically applied research.Developing knowledge Ultimately, data and information must be translated into knowledge. With a team of specialists and partners Breda University of applied sciences developed knowledge and tools to monitor and evaluate cycling behavior. By participating in (inter)national research programs BUAS has become one of the frontrunners in data-driven cycle policy enhancement. In close collaboration with road authorities, knowledge institutes as well as consultants, new insights and answers are developed in an international context. By an active knowledge contribution to the network of the Dutch Cycling Embassy, BUAS aims to strengthen its position and add to the global sustainability challenges. Partners: Province Noord-Brabant, Province Utrecht, Vervoerregio Amsterdam, Dutch Cycling Embassy, Tour de Force, University of Amsterdam, Technical University Eindhoven, Technical University Delft, Utrecht University, DTV Capacity building, Dat.mobility, Goudappel Coffeng, Argaleo, Stratopo, Move.Mobility Clients:Province Noord-Brabant, Province Utrecht, Province Zuid-Holland, Tilburg, Breda, Tour de Force