Service of SURF
© 2025 SURF
The anthocyanin composition of five purple leaves cultivars of Ocimum basilicum L. was investigated by reversed-phase HPLC with mass-spectrometric detection by ESI mode with ion partial fragmentation as well as preparation of dried differently colored forms of anthocyanins encapsulated into maltodextrinmatrix. Analysis of the mass spectra revealed that according to the chromatographic profile the set of basil cultivar anthocyanins under investigation may be divided into two groups with the common feature being ahigh level of acylation with (mainly) p-coumaric, ferulic and malonic acids of the same base: cyanidin-3-dihexoside-5-hexoside. The presence of acylation with substituted cinnamic acids permits us to obtain solutions not only with a red color (the property of the flavylium form) but also with blue shades of coloration due to quinonoid and negatively charged quinonoid forms. All forms except that of flavylium are not stable in solution but stable enough to prepare dried encapsulated forms by lyophilization. Although the loss of anthocyaninswith drying is not negligible, the final product is characterized with high stability for storage in a refrigerator.
Reversed-phase HPLC with mass spectrometric and diode array detection as well as some literature data were used to reveal the individual types of solutes in anthocyanin complexes of tulip flower petals that are responsible for tulip flower petals coloration of the samples available in the local flower market. It has been found that the main components of the complexes are 3-rutinosides and their 2”’ and 3”’ acylated with acetic acid derivatives of the three anthocyanidins - delphinidin, cyanidin and pelargonidin in the color dependent ratios, though trace quantities of 3-glucosides were found in some cases. For the anthocyanin structure confirmation a correlation analysis of solute retentions of cyanidin or pelargonidin derivatives vs that of delphinidin was proposed based upon equivalence of structures alteration in the solute pairs for each series. The specificity of solutes retention modes was revealed by relative retention analysis, the trend parameters reflected particularities of chromatographic behavior as well as that of electron spectra of the solutes. The difference of acylated anthocyanins retentions was proposed to disclose the conformation states of solutes in the sorbent interface.