This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included selected case studies that have been found to implement lean work organization and industrialized product technology in an experimental setting. Adjustments to the work organization and construction technology have been implemented on site. The effects of the adjustments have been measured and were reviewed with operatives and managers. The data have been collected and analyzed, in comparison to traditional settings. Two projects were studied. The first case implied am application of lean work organization in which labor was reorganized redistributing and balancing operations among operatives of different trades. In the second case industrialized solution for prefabricated installation of prefabricated roofs. In both cases the labor productivity increased substantially compared to traditional situations. Although the limited number of cases, both situations appeared to be representative for other housing projects. This has led to conclusions extrapolated from both cases applicable to other projects, and contribution to the knowledge to improve production in construction. Vrijhoef, R. (2016). “Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects.” In: Proc. 24 th Ann. Conf. of the Int’l. Group for Lean Construction, Boston, MA, USA, sect.2 pp. 63–72. Available at: .
MULTIFILE
This paper presents work aimed at improved organization and performance of production in housing renovation projects. The purpose is to explore and demonstrate the potential of lean work organization and industrialized product technology to improve workflow and productive time. The research included selected case studies that have been found to implement lean work organization and industrialized product technology in an experimental setting. Adjustments to the work organization and construction technology have been implemented on site. The effects of the adjustments have been measured and were reviewed with operatives and managers. The data have been collected and analyzed, in comparison to traditional settings. Two projects were studied. The first case implied am application of lean work organization in which labor was reorganized redistributing and balancing operations among operatives of different trades. In the second case industrialized solution for prefabricated installation of prefabricated roofs. In both cases the labor productivity increased substantially compared to traditional situations. Although the limited number of cases, both situations appeared to be representative for other housing projects. This has led to conclusions extrapolated from both cases applicable to other projects, and contribution to the knowledge to improve production in construction. Vrijhoef, R. (2016). “Effects of Lean Work Organization and Industrialization on Workflow and Productive Time in Housing Renovation Projects.” In: Proc. 24 th Ann. Conf. of the Int’l. Group for Lean Construction, Boston, MA, USA, sect.2 pp. 63–72. Available at: .
MULTIFILE
Many origin of life theories argue that molecular self-organization explains the spontaneous emergence of structural and dynamical constraints. However, the preservation of these constraints over time is not well-explained because ofthe self-undermining and self-limiting nature of these same processes. A process called autogenesis has been proposed in which a synergetic coupling between self-organized processes preserves the constraints thereby accumulated. Thispaper presents a computer simulation of this process (the AutogenicAutomaton) and compares its behavior to the same self-organizing processes when uncoupled. We demonstrate that this coupling produces a second-order constraint that can both resist dissipation and become replicated in new substrates over time.
MULTIFILE
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Dutch society faces major future challenges putting populations’ health and wellbeing at risk. An ageing population, increase of chronic diseases, multimorbidity and loneliness lead to more complex healthcare demands and needs and costs are increasing rapidly. Urban areas like Amsterdam have to meet specific challenges of a growing and super divers population often with a migration background. The bachelor programs and the relating research groups of social work and occupational therapy at the Amsterdam University of Applied Sciences innovate their curricula and practice-oriented research by multidisciplinary and cross-domain approaches. Their Centres of Expertise foster interprofessional research and educational innovation on the topics of healthy ageing, participation, daily occupations, positive health, proximity, community connectedness and urban innovation in a social context. By focusing on senior citizens’ lives and by organizing care in peoples own living environment. Together with their networks, this project aims to develop an innovative health promotion program and contribute to the government missions to promote a healthy and inclusive society. Collaboration with stakeholders in practice based on their urgent needs has priority in the context of increasing responsibilities of local governments and communities. Moreover, the government has recently defined social base as being the combination of citizen initiatives, volunteer organizations , caregivers support, professional organizations and support of vulnerable groups. Kraktie Foundations is a community based ethno-cultural organization in south east Amsterdam that seeks to research and expand their informal services to connect with and build with professional care organizations. Their aim coincides with this project proposal: promoting health and wellbeing of senior citizens by combining intervention, participatory research and educational perspectives from social work, occupational therapy and hidden voluntary social work. With a boundary crossing innovation of participatory health research, education and Kraktie’s work in the community we co-create, change and innovate towards sustainable interventions with impact.
The SPRONG-collaboration “Collective process development for an innovative chemical industry” (CONNECT) aims to accelerate the chemical industry’s climate/sustainability transition by process development of innovative chemical processes. The CONNECT SPRONG-group integrates the expertise of the research groups “Material Sciences” (Zuyd Hogeschool), “Making Industry Sustainable” (Hogeschool Rotterdam), “Innovative Testing in Life Sciences & Chemistry” and “Circular Water” (both Hogeschool Utrecht) and affiliated knowledge centres (Centres of Expertise CHILL [affiliated to Zuyd] and HRTech, and Utrecht Science Park InnovationLab). The combined CONNECT-expertise generates critical mass to facilitate process development of necessary energy-/material-efficient processes for the 2050 goals of the Knowledge and Innovation Agenda (KIA) Climate and Energy (mission C) using Chemical Key Technologies. CONNECT focuses on process development/chemical engineering. We will collaborate with SPRONG-groups centred on chemistry and other non-SPRONG initiatives. The CONNECT-consortium will generate a Learning Community of the core group (universities of applied science and knowledge centres), companies (high-tech equipment, engineering and chemical end-users), secondary vocational training, universities, sustainability institutes and regional network organizations that will facilitate research, demand articulation and professionalization of students and professionals. In the CONNECT-trajectory, four field labs will be integrated and strengthened with necessary coordination, organisation, expertise and equipment to facilitate chemical innovations to bridge the innovation valley-of-death between feasibility studies and high technology-readiness-level pilot plant infrastructure. The CONNECT-field labs will combine experimental and theoretical approaches to generate high-quality data that can be used for modelling and predict the impact of flow chemical technologies. The CONNECT-trajectory will optimize research quality systems (e.g. PDCA, data management, impact). At the end of the CONNECT-trajectory, the SPRONG-group will have become the process development/chemical engineering SPRONG-group in the Netherlands. We can then meaningfully contribute to further integrate the (inter)national research ecosystem to valorise innovative chemical processes for the KIA Climate and Energy.