Objective. In this study it was investigated whether an artificial neural network can be used to determine the horizontal, fore-aft component of the ground reaction force from insole pressure patterns. Design. An artificial neural network was applied to map insole pressures and ground reaction forces. Method. To train an artificial neural network insole pressure patterns and ground reaction force data were simultaneously determined for a wide range of different speeds (0.9-2.3 m s−1) for five subjects. Both intrasubject and intersubject generalizability were evaluated. Results. At the intrasubject level generalizability was good when the speed for which the force was to be predicted was within the range of speeds from which data were used to train the network. Besides in some cases, generalizability to a condition outside the range of training conditions could be demonstrated. At the intersubject level the quality of generalization differed widely over subjects, from poor to good. Conclusions. It was found that an artificial neural network is able to map the relationship between insole pressure patterns and the fore-aft component of the ground reaction force. Relevance Good intrasubject generalization of 'knowledge' obtained by an artificial neural network will allow the assessment of the fore-aft component of ground reaction force in condition that cannot be evaluated with force plates, e.g. activities of daily living or real sport situations. Additionally, intersubject generalization will allow shear-force recordings in subjects that are not able to complete a great number of runs to acquire enough force-plate hits.
Objective. In this study it was investigated whether an artificial neural network can be used to determine the horizontal, fore-aft component of the ground reaction force from insole pressure patterns. Design. An artificial neural network was applied to map insole pressures and ground reaction forces. Method. To train an artificial neural network insole pressure patterns and ground reaction force data were simultaneously determined for a wide range of different speeds (0.9-2.3 m s−1) for five subjects. Both intrasubject and intersubject generalizability were evaluated. Results. At the intrasubject level generalizability was good when the speed for which the force was to be predicted was within the range of speeds from which data were used to train the network. Besides in some cases, generalizability to a condition outside the range of training conditions could be demonstrated. At the intersubject level the quality of generalization differed widely over subjects, from poor to good. Conclusions. It was found that an artificial neural network is able to map the relationship between insole pressure patterns and the fore-aft component of the ground reaction force. Relevance Good intrasubject generalization of 'knowledge' obtained by an artificial neural network will allow the assessment of the fore-aft component of ground reaction force in condition that cannot be evaluated with force plates, e.g. activities of daily living or real sport situations. Additionally, intersubject generalization will allow shear-force recordings in subjects that are not able to complete a great number of runs to acquire enough force-plate hits.
Being able to classify experienced emotions by identifying distinct neural responses has tremendous value in both fundamental research (e.g. positive psychology, emotion regulation theory) and in applied settings (clinical, healthcare, commercial). We aimed to decode the neural representation of the experience of two discrete emotions: sadness and disgust, devoid of differences in valence and arousal. In a passive viewing paradigm, we showed emotion evoking images from the International Affective Picture System to participants while recording their EEG. We then selected a subset of those images that were distinct in evoking either sadness or disgust (20 for each), yet were indistinguishable on normative valence and arousal. Event-related potential analysis of 69 participants showed differential responses in the N1 and EPN components and a support-vector machine classifier was able to accurately classify (58%) whole-brain EEG patterns of sadness and disgust experiences. These results support and expand on earlier findings that discrete emotions do have differential neural responses that are not caused by differences in valence or arousal.
The project aim is to improve collusion resistance of real-world content delivery systems. The research will address the following topics: • Dynamic tracing. Improve the Laarhoven et al. dynamic tracing constructions [1,2] [A11,A19]. Modify the tally based decoder [A1,A3] to make use of dynamic side information. • Defense against multi-channel attacks. Colluders can easily spread the usage of their content access keys over multiple channels, thus making tracing more difficult. These attack scenarios have hardly been studied. Our aim is to reach the same level of understanding as in the single-channel case, i.e. to know the location of the saddlepoint and to derive good accusation scores. Preferably we want to tackle multi-channel dynamic tracing. • Watermarking layer. The watermarking layer (how to embed secret information into content) and the coding layer (what symbols to embed) are mostly treated independently. By using soft decoding techniques and exploiting the “nuts and bolts” of the embedding technique as an extra engineering degree of freedom, one should be able to improve collusion resistance. • Machine Learning. Finding a score function against unknown attacks is difficult. For non-binary decisions there exists no optimal procedure like Neyman-Pearson scoring. We want to investigate if machine learning can yield a reliable way to classify users as attacker or innocent. • Attacker cost/benefit analysis. For the various use cases (static versus dynamic, single-channel versus multi-channel) we will devise economic models and use these to determine the range of operational parameters where the attackers have a financial benefit. For the first three topics we have a fairly accurate idea how they can be achieved, based on work done in the CREST project, which was headed by the main applicant. Neural Networks (NNs) have enjoyed great success in recognizing patterns, particularly Convolutional NNs in image recognition. Recurrent NNs ("LSTM networks") are successfully applied in translation tasks. We plan to combine these two approaches, inspired by traditional score functions, to study whether they can lead to improved tracing. An often-overlooked reality is that large-scale piracy runs as a for-profit business. Thus countermeasures need not be perfect, as long as they increase the attack cost enough to make piracy unattractive. In the field of collusion resistance, this cost analysis has never been performed yet; even a simple model will be valuable to understand which countermeasures are effective.
Human kind has a major impact on the state of life on Earth, mainly caused by habitat destruction, fragmentation and pollution related to agricultural land use and industrialization. Biodiversity is dominated by insects (~50%). Insects are vital for ecosystems through ecosystem engineering and controlling properties, such as soil formation and nutrient cycling, pollination, and in food webs as prey or controlling predator or parasite. Reducing insect diversity reduces resilience of ecosystems and increases risks of non-performance in soil fertility, pollination and pest suppression. Insects are under threat. Worldwide 41 % of insect species are in decline, 33% species threatened with extinction, and a co-occurring insect biomass loss of 2.5% per year. In Germany, insect biomass in natural areas surrounded by agriculture was reduced by 76% in 27 years. Nature inclusive agriculture and agri-environmental schemes aim to mitigate these kinds of effects. Protection measures need success indicators. Insects are excellent for biodiversity assessments, even with small landscape adaptations. Measuring insect biodiversity however is not easy. We aim to use new automated recognition techniques by machine learning with neural networks, to produce algorithms for fast and insightful insect diversity indexes. Biodiversity can be measured by indicative species (groups). We use three groups: 1) Carabid beetles (are top predators); 2) Moths (relation with host plants); 3) Flying insects (multiple functions in ecosystems, e.g. parasitism). The project wants to design user-friendly farmer/citizen science biodiversity measurements with machine learning, and use these in comparative research in 3 real life cases as proof of concept: 1) effects of agriculture on insects in hedgerows, 2) effects of different commercial crop production systems on insects, 3) effects of flower richness in crops and grassland on insects, all measured with natural reference situations
Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry. Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers. The XAIPre project (pronounce “Xyper”) aims at developing Explainable Predictive Maintenance (XPdM) algorithms that do not only provide the engineers with a prediction but in addition, with 1) a risk analysis on the components when delaying the maintenance, and 2) what the primary indicators are that the algorithms used to create inference. To use predictive maintenance effectively in Maritime operations, the predictive models and the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane performs. Thus, the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze UAS in Groningen, context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that we already developed in the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The optimizers will be adapted to fit within XAIPre. The resulting XAIPre prototype offers significant competitive advantages for companies such as Heerema, by increasing the longevity of machine components, increasing worker safety, and decreasing maintenance costs. XAIPre will focus on the predictive maintenance of thrusters, which is a key sub-system with regards to maintenance as it is a core part of the vessels station keeping capabilities. Periodic maintenance is currently required in fixed intervals of 5 years. XPdM can provide a solid base to deviate from the Periodic Maintenance prescriptions to reduce maintenance costs while maintaining quality. Scaling up to include additional components and systems after XAIPre will be relatively straightforward due to the accumulated knowledge of the predictive maintenance process and the delivered methods. Although the XAIPre system will be evaluated on the use-cases of Heerema, many components of the system can be utilized across industries to save maintenance costs, maximize worker safety and optimize sustainability.