project

XAIPre: Explainable AI for Predictive Maintenance


Description

Predictive maintenance, using data of thousands of sensors already available, is key for optimizing the maintenance schedule and further prevention of unexpected failures in industry. Current maintenance concepts (in the maritime industry) are based on a fixed maintenance interval for each piece of equipment with enough safety margin to minimize incidents. This means that maintenance is most of the time carried out too early and sometimes too late. This is in particular true for maintenance on maritime equipment, where onshore maintenance is strongly preferred over offshore maintenance and needs to be aligned with the vessel’s operations schedule. However, state-of-the-art predictive maintenance methods rely on black-box machine learning techniques such as deep neural networks that are difficult to interpret and are difficult to accept and work with for the maintenance engineers.

The XAIPre project (pronounce “Xyper”) aims at developing Explainable Predictive Maintenance (XPdM) algorithms that do not only provide the engineers with a prediction but in addition, with 1) a risk analysis on the components when delaying the maintenance, and 2) what the primary indicators are that the algorithms used to create inference.
To use predictive maintenance effectively in Maritime operations, the predictive models and the optimization of the maintenance schedule using these models, need to be aware of the past and planned vessel activities, since different activities affect the lifetime of the machines differently. For example, the degradation of a hydraulic pump inside a crane depends on the type of operations the crane performs. Thus, the models do not only need to be explainable but they also need to be aware of the context which is in this case the vessel and machinery activity. Using sensor data processing and edge-computing technologies that will be developed and applied by the Hanze UAS in Groningen, context information is extracted from the raw sensor data. The XAIPre project combines these Explainable Context Aware Machine Learning models with state-of-the-art optimizers, that we already developed in the NWO CIMPLO project at LIACS, in order to develop optimal maintenance schedules for machine components. The optimizers will be adapted to fit within XAIPre. The resulting XAIPre prototype offers significant competitive advantages for companies such as Heerema, by increasing the longevity of machine components, increasing worker safety, and decreasing maintenance costs.

XAIPre will focus on the predictive maintenance of thrusters, which is a key sub-system with regards to maintenance as it is a core part of the vessels station keeping capabilities. Periodic maintenance is currently required in fixed intervals of 5 years. XPdM can provide a solid base to deviate from the Periodic Maintenance prescriptions to reduce maintenance costs while maintaining quality. Scaling up to include additional components and systems after XAIPre will be relatively straightforward due to the accumulated knowledge of the predictive maintenance process and the delivered methods.
Although the XAIPre system will be evaluated on the use-cases of Heerema, many components of the system can be utilized across industries to save maintenance costs, maximize worker safety and optimize sustainability.


Products

This project has no products



Project status

Ongoing

Start date

End date

Region

Not known