‘Never waste a good crisis.’ Deze uitspraak schijnt Winston Churchill te hebben gedaan om aan te geven dat het ontstaan van de Verenigde Naties te danken was aan de periode daarvoor: de Tweede Wereldoorlog. De auteurs vatten een aantal conclusies samen die zijn getrokken op basis van diverse studies, waaronder een masterthesis onderzoek (Bronneberg, 2019) naar de historie van Brainport Eindhoven en de geleerde lessen die daaruit zijn op te maken.
LINK
‘Never waste a good crisis.’ Deze uitspraak schijnt Winston Churchill te hebben gedaan om aan te geven dat het ontstaan van de Verenigde Naties te danken was aan de periode daarvoor: de Tweede Wereldoorlog. De auteurs vatten een aantal conclusies samen die zijn getrokken op basis van diverse studies, waaronder een masterthesis onderzoek (Bronneberg, 2019) naar de historie van Brainport Eindhoven en de geleerde lessen die daaruit zijn op te maken.
LINK
Our planet’s ecology and society are on a collision course, which manifests due to a contradiction in the assumptions of unlimited material growth fueling the linear economic paradigm. Our closed planetary ecosystem imposes confined amounts of space and a finite extent of resources upon its inhabitants. However, practically all the economic perspectives have been defiantly neglecting these realities, as resources are extracted, used and disposed of reluctantly (Ellen MacArthur Foundation 2015). The circular economy attempts to reconcile the extraction, production and usage of goods and resources with the limited availability of those resources and nature’s regenerative capabilities This perspective entails a shift throughout the supply chain, from material science (e g non-toxic, regenerative biomaterials) to novel logistical systems (e g low-carbon reverse logistics). Because of this, the circular economy is often celebrated for its potential environmental benefits and its usefulness as a blueprint for sustainable development (Ellen MacArthur Foundation 2017). Unfortunately, the promise of the circular economy aiming at enhanced sustainability through restorative intent and design (McDonough & Braungart 2010), is often inhibited by institutional barriers posed by the current linear economy of take, make, use and waste (Ghisellini et al. 2016). Underlying those barriers our cultural paradigm celebrates consumerism, exponential growth and financial benefit instead of human values such as diversity, care and trust. Based on a mapping exercise of the circular economy discourse in the Netherlands and an overview of international (academic) literature (Van den Berg 2020) supplemented with collaborative co-creation sessions, visiting events, conferences, giving talks and classes, we have defined a gap leading to the focus of the Professorship. First, we highlight the importance of a process approach in studying the transition from a linear to a circular economy, which is why we use the verb ‘entrepreneuring’ as it indicates the movement we collectively need to make. The majority of work in the field is based on start-ups and only captures snapshots while longitudinal and transition perspectives - especially of larger companies - are missing (Merli et al. 2019; Geissdoerfer et al. 2018; Bocken et al. 2014). We specifically adopt an entrepreneurship-as-practice lens (Thompson, Verduijn & Gartner 2020), which allows us to trace the doings – as opposed to only the sayings - of organizations involved in circular innovation. Such an approach also enables us to study cross-sector and interfirm collaboration, which is crucial to achieve ecosystem circularity (Raworth 2019). As materials flow between actors in a system, traditional views of ‘a value chain’ slowly make way for an ecosystem or value web perspective on ‘organizing business’. We summarize this first theme as ‘entrepreneurship as social change’ broadening dominant views of what economic activity is and who the main actors are supposed to be (Barinaga 2013; Calás, Smircich & Bourne 2009; Steyaert & Hjorth 2008; Nicholls 2008). Second, within the Circular Business Professorship value is a big word in two ways. First of all, we believe that a transition to a circular economy is not just a transition of materials, nor technologies - it is most of all a transition of values We are interested in how people can explore their own agency in transitioning to a circular economy thereby aligning their personal values with the values of the organization and the larger system they are a part of Second, while circularity is a broad concept that can be approached through different lenses, the way in which things are valued and how value is created and extracted lies at the heart of the transition (Mazzucato 2018). If we don’t understand value as collectively crafted it will be very hard to change things, which is why we specifically focus on multiplicity and co-creation in the process of reclaiming value, originating from an ethics of care Third, sustainability efforts are often concerned with optimization of the current – linear – system by means of ecoefficient practices that are a bit ‘less bad’; using ’less resources’, causing ‘less pollution’ and ‘having less negative impact’. In contrast, eco-effective practices are inherently good, departing from the notion of abundance: circular thinking celebrates the abundance of nature’s regenerative capacities as well as the abundance of our imagination to envision new realities (Ellen MacArthur Foundation 2015). Instead of exploiting natural resources, we should look closely in order to learn how we can build resilient self-sustaining ecosystems like the ones we find in nature. We are in need of rediscovering our profound connection with and appreciation of nature, which requires us to move beyond the cognitive and employ an aesthetic perspective of sustainability This perspective informs our approach to innovating education: aesthetics can support deep sustainability learning (Ivanaj, Poldner & Shrivastava 2014) and contribute to facilitating the circular change makers of the future. The current linear economy has driven our planet’s ecology and society towards a collision course and it is really now or never: if we don’t alter the course towards a circular economy today, then when? When will it become urgent enough for us to take action? Which disaster is needed for us to wake up? We desperately need substitutes for the current neo-liberal paradigm, which underlies our linear society and prevents us from becoming an economy of well-being In Entrepreneuring a regenerative society I propose three research themes – ‘entrepreneurship as social change’, ‘reclaiming value’ and ‘the aesthetics of sustainability’ – as alternative ways of embracing, studying and co-creating such a novel reality. LinkedIn: https://www.linkedin.com/in/kim-poldner-a003473/
MULTIFILE
TechForFuture en SRON hebben elkaar gevonden op het onderzoeksterrein van de nanotechnologie. SRON is het Nederlands Instituut voor Ruimtevaartonderzoek, een van de acht NWO-instituten, gespecialiseerd in hoogwaardig, fundamenteel onderzoek op het snijvlak van space-technologie, ruimte-instrumentarium en de enabling technologieën. TechForFuture (TFF) is het Centre of Expertise HTSM-Oost, een samenwerking van Saxion en Windesheim, voor praktijkgericht onderzoek binnen het kennisterrein van de Hightech Systemen en Materialen. Door de samenwerking tussen TFF en SRON ontstaat een doorlopende kennislijn van fundamenteel naar toepassingsgericht en wordt de interactie tussen fundamenteel en toepassing in het mkb versterkt. Deze samenwerking krijgt vorm in de persoon van Aleksandar Andreski, die als gezamenlijk onderzoeker actief zal zijn bij zowel TFF als SRON. Zijn opdracht is de praktijkgerichte valorisatiekennis van TFF te verbinden met de fundamentele kennis en ervaring van SRON, om zo een brug te slaan tussen nieuwe technologie, inclusief de praktijk van de engineering uit het ruimteonderzoek en praktijktoepassing in en met het mkb.
Artificial grass is much more durable and easily maintained than natural grass and therefore finds use in a wide range of applications. The artificial grass system consists of various components which are currently predominantly made of non-biodegradable plastics derived from fossil fuels. Consequently, it has a large environmental impact and is a significant contributor to the world’s (micro)plastic problem. Simultaneously, the world is suffering from a textile waste problem. In the EU only, 12.6 million tons of textile waste is produced annually. Most of this post-consumer textile waste ends up in landfills or incinerators. Striving for a circular economy, new regulations like the Extended Producer Responsibility (EPR) define goals for the collection and recycling of this textile waste. A dominant textile-waste stream is cotton, which consists of the biodegradable biopolymer cellulose. Cotton can be eco-friendly chemically recycled into regenerated cellulose fibres using the lyocell wet-spin process. The ReCeWTAG proposal will explore regenerating cellulose pulp from textile waste into natural artificial grass-like fibres. Currently cellulosic fibres do not have the same properties as synthetic fibres. This applied project will explore how regenerated cellulose grass fibres can be produced with the properties required by varying parameters on Saxion’s recently installed wet-spinning line. SaXcell BV will supply cellulose pulp generated from various cotton-containing textile waste-streams. TenCate Thiolon BV will advise on the required properties. bAwear will assess the environmental impact benefits. The aim is to follow-up this project to replace all synthetic components in artificial grass with cellulose creating a circular system as well as expanding the concept to other technical textiles. It will also assess waste streams like agricultural residues for cellulose regeneration, supporting the circular economy by reducing microplastics, waste and environmental impact.
About half of the e-waste generated in The Netherlands is properly documented and collected (184kT in 2018). The amount of PCBs in this waste is projected to be about 7kT in 2018 with a growth rate of 3-4%. Studies indicate that a third of the weight of a PCB is made or recoverable and critical metals which we need as resources for the various societal challenges facing us in the future. Recycling a waste PCB today means first shredding it and then processing it for material recovery mostly via non-selective pyrometallurgical methods. Sorting the PCBs in quality grades (wastebins) before shredding would however lead to more flexibility in selecting when and which recovery metallurgy is to be used. The yield and diversity of the recovered metals increases as a result, especially when high-grade recycling techniques are used. Unfortunately, the sorting of waste PCBs is not easily automated as an experienced operator eye is needed to classify the very inhomogeneous waste-PCB stream in wastebins. In this project, a knowledge institution partners with an e-waste processor, a high-grade recycling technology startup and a developer of waste sorting systems to investigate the efficiency of methods for sensory sorting of waste PCBs. The knowledge gained in this project will lead towards a waste PCB sorting demonstrator as a follow-up project.