Artificial grass is much more durable and easily maintained than natural grass and therefore finds use in a wide range of applications. The artificial grass system consists of various components which are currently predominantly made of non-biodegradable plastics derived from fossil fuels. Consequently, it has a large environmental impact and is a significant contributor to the world’s (micro)plastic problem.
Simultaneously, the world is suffering from a textile waste problem. In the EU only, 12.6 million tons of textile waste is produced annually. Most of this post-consumer textile waste ends up in landfills or incinerators. Striving for a circular economy, new regulations like the Extended Producer Responsibility (EPR) define goals for the collection and recycling of this textile waste. A dominant textile-waste stream is cotton, which consists of the biodegradable biopolymer cellulose. Cotton can be eco-friendly chemically recycled into regenerated cellulose fibres using the lyocell wet-spin process.
The ReCeWTAG proposal will explore regenerating cellulose pulp from textile waste into natural artificial grass-like fibres. Currently cellulosic fibres do not have the same properties as synthetic fibres. This applied project will explore how regenerated cellulose grass fibres can be produced with the properties required by varying parameters on Saxion’s recently installed wet-spinning line. SaXcell BV will supply cellulose pulp generated from various cotton-containing textile waste-streams. TenCate Thiolon BV will advise on the required properties. bAwear will assess the environmental impact benefits.
The aim is to follow-up this project to replace all synthetic components in artificial grass with cellulose creating a circular system as well as expanding the concept to other technical textiles. It will also assess waste streams like agricultural residues for cellulose regeneration, supporting the circular economy by reducing microplastics, waste and environmental impact.
This project has no products
To be started
Not known