Service of SURF
© 2025 SURF
Deze handleiding “Evidence-based ontwikkelen van business modellen voor het valoriseren van innovatieve sensortechnologie” kunnen studenten tijdens hun stage- of afstudeerproject kunnen gebruiken om onderbouwde business modellen te ontwikkelen. Deze handleiding is ontwikkeld in het kader van het ID3AS-project.De handleiding is geïnspireerd op meerdere afstudeer-onderzoeken aan de Hanzehogeschool Groningen waarin een business model ontwikkeld is voor de toepassing van innovatieve technologie. Het eindproduct was steeds een relevant een business model dat mede gebaseerd is op actuele ondernemersinitiatieven, expertise en inzichten uit de praktijk.In de instructieparagrafen van deze handleiding staat daarom centraal hoe de studenten een projectconsortium kunnen informeren en laten meedenken, adviseren en meebeslissen in alle fasen van business model development. De studenten worden, als eerste doelgroep van deze handleiding, daarom aangesproken in hun rol als business developer voor een projectconsortium.Terwijl dit bedoeld is om de relevantie voor een projectconsortium van het business model te vergroten, hebben de studenten echter ook te maken met eisen van methodologische grondigheid van hun business model.Aan de Hanzehogeschool ontwikkelen veel studenten een business model voor bijvoorbeeld een ID3AS-project als stage- of afstudeeropdracht. Aangezien zij dan aan kwaliteitscriteria uit de methodologie van toegepast praktijkgericht onderzoek moeten voldoen, beschrijven de paragrafen met theoretische uitleg welke theorieën, modellen, methoden, begrippen en criteria relevant zijn per fase van business model development.Deze handleiding beoogt daarom de studenten te leren hoe zij in hun business model ontwikkeling kunnen voldoen aan zowel “relevance and rigour”. De rapportage over het business model moet twee doelgroepen kunnen bedienen: projectconsortia van bedrijven die op zoek zijn naar een kansrijk business model in de praktijk, en docenten en beoordelaars vanuit de Hanzehogeschool die eisen stellenaan het eindproduct, de onderbouwing en rapportage van een business model als produkt waarmee getoetst kan worden of studenten bepaalde competenties bezitten, zoals onderzoekend vermogen, creativiteit en innovativiteit.
Neoliberal discourse often conceptualizes nature in relation to its market utility and economic development. This article will address the role of metaphors in shaping neoliberal discourse in business education. The aim of this article is to reveal reasoning patterns about environmental problems and economic development in students of sustainable business minor. The case study described in this article involves business students at The Hague University in The Netherlands. This case study aimed to explore a shift in student understanding of environmental problems and economic development before and after the intervention. The results suggest that critical curriculum can inform students about the alternative conceptions as well as instruct them about potential solutions to the sustainability challenges. The article culminates with the argument that without goal-oriented education for sustainability; neoliberal education may not permit transcendence from unsustainable practices. https://doi.org/10.3390/su6117496 https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Purpose: To facilitate the design of viable business models by proposing a novel business model design framework for viability. Design: A design science research method is adopted to develop a business model design framework for viability. The business model design framework for viability is demonstrated by using it to design a business model for an energy enterprise. The aforementioned framework is validated in theory by using expert opinion. Findings: It is difficult to design viable business models because of the changing market conditions, and competing interests of stakeholders in a business ecosystem setting. Although the literature on business models provides guidance on designing viable business models, the languages (business model ontologies) used to design business models largely ignore such guidelines. Therefore, we propose a business model design framework for viability to overcome the identified shortcomings. The theoretical validation of the business model design framework for viability indicates that it is able to successfully bridge the identified shortcomings, and it is able to facilitate the design of viable business models. Moreover, the validation of the framework in practice is currently underway. Originality / value: Several business model ontologies are used to conceptualise and evaluate business models. However, their rote application will not lead to viable business models, because they largely ignore vital design elements, such as design principles, configuration techniques, business rules, design choices, and assumptions. Therefore, we propose and validate a novel business model design framework for viability that overcomes the aforementioned shortcomings.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Sea Lettuce, Ulva spp. is a versatile and edible green seaweed. Ulva spp is high in protein, carbohydrates and lipids (respectively 7%-33%; 33%-62% and 1%-3% on dry weight base [1, 2]) but variation in these components is high. Ulva has the potential to produce up to 45 tons DM/ha/year but 15 tons DM/ha/year is more realistic.[3, 4] This makes Ulva a possible valuable resource for food and other applications. Sea Lettuce is either harvested wild or cultivated in onshore land based aquaculture systems. Ulva onshore aquaculture is at present implemented only on a few locations in Europe on commercial scale because of limited knowledge about Ulva biology and its optimal cultivation systems but also because of its unfamiliarity to businesses and consumers. The objective of this project is to improve Ulva onshore aquaculture by selecting Ulva seed material, optimizing growth and biomass production by applying ecophysiological strategies for nutrient, temperature, microbiome and light management, by optimizing pond systems eg. attached versus free floating production and eventually protoype product development for feed, food and cosmetics.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.