Objective This study aims to identify determinants of dietary behaviour in wheelchair users with spinal cord injury or lower limb amputation, from the perspectives of both wheelchair users and rehabilitation professionals. The findings should contribute to the field of health promotion programs for wheelchair users. Methods Five focus groups were held with wheelchair users (n = 25), and two with rehabilitation professionals (n = 11). A thematic approach was used for data analysis in which the determinants were categorized using an integrated International Classification of Functioning, Disability and Health and Attitude, Social influence and self-Efficacy model. Results Reported personal factors influencing dietary behaviour in wheelchair users were knowledge, boredom, fatigue, stage of life, habits, appetite, self-control, multiple lifestyle problems, intrinsic motivation, goal setting, monitoring, risk perception, positive experiences, suffering, action planning, health condition, function impairments, attitude and self-efficacy. Reported environmental factors influencing dietary behaviour in wheelchair users were unadjusted kitchens, monitoring difficulties, eating out, costs, unfavourable food supply, nutrition education/counselling, access to simple healthy recipes, eating together, cooking for others, and awareness and support of family and friends. Conclusions Important modifiable determinants of dietary behaviour in wheelchair users that might be influenced in lifestyle interventions are knowledge, fatigue, habits, self-control, intrinsic motivation, risk perception, attitude and self-efficacy. It is recommended to involve relatives, since they appear to significantly influence dietary behaviour.
Objective This study aims to identify determinants of dietary behaviour in wheelchair users with spinal cord injury or lower limb amputation, from the perspectives of both wheelchair users and rehabilitation professionals. The findings should contribute to the field of health promotion programs for wheelchair users. Methods Five focus groups were held with wheelchair users (n = 25), and two with rehabilitation professionals (n = 11). A thematic approach was used for data analysis in which the determinants were categorized using an integrated International Classification of Functioning, Disability and Health and Attitude, Social influence and self-Efficacy model. Results Reported personal factors influencing dietary behaviour in wheelchair users were knowledge, boredom, fatigue, stage of life, habits, appetite, self-control, multiple lifestyle problems, intrinsic motivation, goal setting, monitoring, risk perception, positive experiences, suffering, action planning, health condition, function impairments, attitude and self-efficacy. Reported environmental factors influencing dietary behaviour in wheelchair users were unadjusted kitchens, monitoring difficulties, eating out, costs, unfavourable food supply, nutrition education/counselling, access to simple healthy recipes, eating together, cooking for others, and awareness and support of family and friends. Conclusions Important modifiable determinants of dietary behaviour in wheelchair users that might be influenced in lifestyle interventions are knowledge, fatigue, habits, self-control, intrinsic motivation, risk perception, attitude and self-efficacy. It is recommended to involve relatives, since they appear to significantly influence dietary behaviour.
This open access book is a valuable resource for students in health and other professions and practicing professionals interested in supporting effective change in self-management behaviors in chronic disease, such as medication taking, physical activity and healthy eating. Developed under the auspices of the Train4Health project, funded by the Erasmus+ program of the European Union, the book contains six chapters written by international contributors from different disciplines. This chapter presents open-access educational products that supplement this book: case studies and a web application to simulate behaviour change support in persons with chronic disease. The former is of particular interest for academic educators, while the latter may interest students independently pursuing training outside the classroom. These products can also be useful for professionals aiming to enhance behaviour change competencies in practice. First, it addresses key aspects of product development, including hallmarks such as the incorporation of behaviour change science and transnational co-production with users. Then, the main features of case studies and the web application with 2D virtual humans are described.
LINK
Creating and testing the first Brand Segmentation Model in Augmented Reality using Microsoft Hololens. Sanoma together with SAMR launched an online brand segmentation tool based on large scale research, The brand model uses several brand values divided over three axes. However they cannot be displayed clearly in a 2D model. The space of BSR Quality Planner can be seen as a 3-dimensional meaningful space that is defined by the terms used to typify the brands. The third axis concerns a behaviour-based dimension: from ‘quirky behaviour’ to ‘standardadjusted behaviour’ (respectful, tolerant, solidarity). ‘Virtual/augmented reality’ does make it possible to clearly display (and experience) 3D. The Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences has created the BSR Quality Planner in Virtual Reality – as a hologram. It’s the world’s first segmentation model in AR. Breda University of Applied Sciences (professorship Digital Media Concepts) has deployed hologram technology in order to use and demonstrate the planning tool in 3D. The Microsoft HoloLens can be used to experience the model in 3D while the user still sees the actual surroundings (unlike VR, with AR the space in which the user is active remains visible). The HoloLens is wireless, so the user can easily walk around the hologram. The device is operated using finger gestures, eye movements or voice commands. On a computer screen, other people who are present can watch along with the user. Research showed the added value of the AR model.Partners:Sanoma MediaMarketResponse (SAMR)
Kinderen met een autisme spectrum stoornis (ASS) kunnen zich vaak moeilijk in anderen verplaatsen en hebben moeite met sociale interactie. In de behandeling van kinderen met ASS wordt ingezet op het trainen van deze sociale vaardigheden (SoVa). SoVa-trainingen hebben echter te weinig effect. Het probleem van de huidige sociale vaardigheidstraining (SoVa) is enerzijds het gebrek aan motivatie bij kinderen met ASS om de training vol te houden en anderzijds de beperkte toepassing van dat wat in de SoVa training wordt geleerd naar het dagelijks leven. Zorgprofessionals concluderen dat aanpassing van de werkvormen gewenst is en hiervoor is een innovatieve blik nodig. De professionals willen nadrukkelijk kijken naar de inzet van digitale toepassingen. Om het effect van de SoVa-trainingen te vergroten wordt in dit project een zgn. Behaviour Change Support System (BCSS) ontwikkeld. Dit BCSS zal bestaan uit een aantal (digitale) toepassingen die met elkaar een logisch samenhangend geheel vormen, passend bij de doelen en methodische kaders die professionals hanteren in de SoVa-trainingen. De toepassingen moeten een set van op maat aan te bieden interventies zijn, gericht op belangrijke c.q. vaak benodigde vaardigheden in sociale interactie. Naast de ontwikkeling van het BCSS richt het project zich ook op het delen van kennis die gegenereerd wordt gedurende het ontwikkelproces van dit BCSS. Het project is een samenwerkingsverband tussen de lectoraten Zorg voor Jeugd, Zorg & Innovatie in de Psychiatrie en iHuman (NHL Hogeschool), het lectoraat User- Centered Design (Hanzehogeschool) en het lectoraat ICT innovatie in de Zorg (Windesheim). Daarnaast wordt samengewerkt met zorgaanbieders van kinder en jeugdpsychiatrie in Noord Nederland (Accare, Kinnik en GGZ Drenthe), diverse scholen basis- en voortgezet onderwijs in Noord-Nederland, het RGOc, de RUG en het kenniscentrum Kinder en Jeugdpsychiatrie. De ontwikkeling van de digitale toepassingen wordt gedaan door 8Dgames.
With increasing penetration rates of driver assistance systems in road vehicles, powerful sensing and processing solutions enable further automation of on-road as well as off-road vehicles. In this maturing environment, SMEs are stepping in and education needs to align with this trend. By the input of student teams, HAN developed a first prototype robot platform to test automated vehicle technology in dynamic road scenarios that include VRUs (Vulnerable Road Users). These robot platforms can make complex manoeuvres while carrying dummies of typical VRUs, such as pedestrians and bicyclists. This is used to test the ability of automated vehicles to detect VRUs in realistic traffic scenarios and exhibit safe behaviour in environments that include VRUs, on public roads as well as in restricted areas. Commercially available VRU-robot platforms are conforming to standards, making them inflexible with respect to VRU-dummy design, and pricewise they are far out of reach for SMEs, education and research. CORDS-VTS aims to create a first, open version of an integrated solution to physically emulate traffic scenarios including VRUs. While analysing desired applications and scenarios, the consortium partners will define prioritized requirements (e.g. robot platform performance, dummy types and behaviour, desired software functionality, etc.). Multiple robots and dummies will be created and practically integrated and demonstrated in a multi-VRU scenario. The aim is to create a flexible, upgradeable solution, published fully in open source: The hardware (robot platform and dummies) will be published as well-documented DIY (do-it-yourself) projects and the accompanying software will be published as open-source projects. With the CORDS-VTS solution, SME companies, researchers and educators can test vehicle automation technology at a reachable price point and with the necessary flexibility, enabling higher innovation rates.