Traffic accidents are a severe public health problem worldwide, accounting for approximately 1.35 million deaths annually. Besides the loss of life, the social costs (accidents, congestion, and environmental damage) are significant. In the Netherlands, in 2018, these social costs were approximately € 28 billion, in which traffic accidents alone accounted for € 17 billion. Experts believe that Automated Driving Systems (ADS) can significantly reduce these traffic fatalities and injuries. For this reason, the European Union mandates several ADS in new vehicles from 2022 onwards. However, the utility of ADS still proves to present difficulties, and their acceptance among drivers is generally low.
As of now, ADS only supports drivers within their pre-defined safety and comfort margins without considering individual drivers’ preferences, limiting ADS in behaving and interacting naturally with drivers and other road users. Thereby, drivers are susceptible to distraction (when out-of-the-loop), cannot monitor the traffic environment nor supervise the ADS adequately. These aspects induce the gap between drivers and ADS, raising doubts about ADS’ usefulness among drivers and, subsequently, affecting ADS acceptance and usage by drivers.
To resolve this issue, the HUBRIS Phase-2 consortium of expert academic and industry partners aims at developing a self-learning high-level control system, namely, Human Counterpart, to bridge the gap between drivers and ADS. The central research question of this research is:
How to develop and demonstrate a human counterpart system that can enable socially responsible human-like behaviour for automated driving systems?
HUBRIS Phase-2 will result in the development of the human counterpart system to improve the trust and acceptance of drivers regarding ADS. In this RAAK-PRO project, the development of this system is validated in two use-cases:
I. Highway: non-professional drivers;
II. Distribution Centre: professional drivers.
Er zijn geen producten gekoppeld
Lopend
Niet bekend