In the fall of 1999, we started, the Integrated Product Development- Collaborative Engineering ( IPD-CE) project as a first pilot. We experimented with modern communication technology in order to find useful tools for facilitating the cooperative work and the contacts of all the participants. Teams have been formed with engineering students from Lehigh University in the US, the Fontys University in Eindhoven, The Netherlands and from the Otto-von-Guericke University in Magdeburg, Germany. In the fall of 2000 we continued and also cooperated with the Finnish Oulu Polytechnic. It turned out that group cohesion stayed low (students did not meet in real life), and that Internet is not mature enough yet for desktop video conferencing. Chatting and email were in these projects by far the most important communication media. We also found out that the use of a Computer Support for Cooperative Work (CSCW) server is a possibility for information interchange. The server can also be used as an electronic project archive. Points to optimise are: 1. We didn't fully match the complete assignments of the groups; 2. We allowed the groups to divide the work in such parts that those were developed and prototyped almost locally; 3. We haven't guided the fall 2000 teams strong enough along our learning curve and experiences from previous groups. 4. We didn't stick strong enough to the, by the groups developed, protocols for email and chat sessions. 5. We should facilitate video conferencing via V-span during the project to enhance the group performance and commitment.
In the fall of 1999, we started, the Integrated Product Development- Collaborative Engineering ( IPD-CE) project as a first pilot. We experimented with modern communication technology in order to find useful tools for facilitating the cooperative work and the contacts of all the participants. Teams have been formed with engineering students from Lehigh University in the US, the Fontys University in Eindhoven, The Netherlands and from the Otto-von-Guericke University in Magdeburg, Germany. In the fall of 2000 we continued and also cooperated with the Finnish Oulu Polytechnic. It turned out that group cohesion stayed low (students did not meet in real life), and that Internet is not mature enough yet for desktop video conferencing. Chatting and email were in these projects by far the most important communication media. We also found out that the use of a Computer Support for Cooperative Work (CSCW) server is a possibility for information interchange. The server can also be used as an electronic project archive. Points to optimise are: 1. We didn't fully match the complete assignments of the groups; 2. We allowed the groups to divide the work in such parts that those were developed and prototyped almost locally; 3. We haven't guided the fall 2000 teams strong enough along our learning curve and experiences from previous groups. 4. We didn't stick strong enough to the, by the groups developed, protocols for email and chat sessions. 5. We should facilitate video conferencing via V-span during the project to enhance the group performance and commitment.
In the fall of 1999, an international integrated product development pilot project based on collaborative engineering was started with team members in two international teams from the United States, The Netherlands and Germany. Team members interacted using various Internet capabilities, including, but not limited to, ICQ (means: I SEEK YOU, an internet feature which immediately detects when somebody comes "on line"), web phones, file servers, chat rooms and Email along with video conferencing. For this study a control group with all members located in the USA only also worked on the same project.
The postdoc candidate, Giuliana Scuderi, will strengthen the connection between the research group Biobased Buildings (BB), (collaboration between Avans University of Applied Sciences and HZ University of Applied Sciences (HZ), and the Civil Engineering bachelor programme (CE) of HZ. The proposed research aims at deepening the knowledge about the mechanical properties of biobased materials for the application in the structural and infrastructural sectors. The research is relevant for the professional field, which is looking for safe and sustainable alternatives to traditional building materials (such as lignin asphalt, biobased panels for bridge constructions, etc.). The study of the mechanical behaviour of traditional materials (such as concrete and steel) is already part of the CE curriculum, but the ambition of this postdoc is that also BB principles are applied and visible. Therefore, from the first year of the programme, the postdoc will develop a biobased material science line and will facilitate applied research experiences for students, in collaboration with engineering and architectural companies, material producers and governmental bodies. Consequently, a new generation of environmentally sensitive civil engineers could be trained, as the labour market requires. The subject is broad and relevant for the future of our built environment, with possible connections with other fields of study, such as Architecture, Engineering, Economics and Chemistry. The project is also relevant for the National Science Agenda (NWA), being a crossover between the routes “Materialen – Made in Holland” and “Circulaire economie en grondstoffenefficiëntie”. The final products will be ready-to-use guidelines for the applications of biobased materials, a portfolio of applications and examples, and a new continuous learning line about biobased material science within the CE curriculum. The postdoc will be mentored and supervised by the Lector of the research group and by the study programme coordinator. The personnel policy and job function series of HZ facilitates the development opportunity.
In the past decade additive manufacturing has gained an incredible traction in the construction industry. The field of 3D concrete printing (3DCP) has advanced significantly, leading to commercially viable housing projects. The use of concrete represents a challenge because of its environmental impact and CO2 footprint. Due to its material properties, structural capacity and ability to take on complex geometries with relative ease, concrete is and will remain for the foreseeable future a key construction material. The framework required for casting concrete, in particular non-orthogonal geometries, is in itself wasteful, not reusable, contributing to its negative environmental impact. Non-standard, complex geometries generally require the use of moulds and subsystems to be produced, leading to wasteful, material-intense manufacturing processes, with high carbon footprints. This research proposal bypasses the use of wasteful scaffolding and moulds, by exploring 3D printing with concrete on reusable substructures made of sand, clay or aggregate. Optimised material depositing strategies for 3DCP will be explored, by making use of algorithmic structural optimisation. This way, material is deposited only where structurally needed, allowing for further reduction of raw-material use. This collaboration between Neutelings Riedijk Architects, Vertico and the Architectural Design and Engineering Chair of the TU Eindhoven, investigates full-scale additive manufacturing of spatially complex 3D-concrete printed components using multi-material support systems (clay, sand and aggregates). These materials can be easily shaped multiple times into substrates with complex geometries, without generating material waste. The 3D concrete printed full-scale prototypes can be used as lightweight façade elements, screens or spatial dividers. To generate waterproof components, the cavities of the extruded lattices can be filled up with lightweight clay or cement. This process allows for the exploration of new aesthetic, creative and circular possibilities, complex geometries and new material expressions in architecture and construction, while reducing raw-material use and waste.
Post-earthquake structural damage shows that wall collapse is one of the most common failure mechanisms in unreinforced masonry buildings. It is expected to be a critical issue also in Groningen, located in the northern part of the Netherlands, where human-induced seismicity has become an uprising problem in recent years. The majority of the existing buildings in that area are composed of unreinforced masonry; they were not designed to withstand earthquakes since the area has never been affected by tectonic earthquakes. They are characterised by vulnerable structural elements such as slender walls, large openings and cavity walls. Hence, the assessment of unreinforced masonry buildings in the Groningen province has become of high relevance. The abovementioned issue motivates engineering companies in the region to research seismic assessments of the existing structures. One of the biggest challenges is to be able to monitor structures during events in order to provide a quick post-earthquake assessment hence to obtain progressive damage on structures. The research published in the literature shows that crack detection can be a very powerful tool as an assessment technique. In order to ensure an adequate measurement, state-of-art technologies can be used for crack detection, such as special sensors or deep learning techniques for pixel-level crack segmentation on masonry surfaces. In this project, a new experiment will be run on an in-plane test setup to systematically propagate cracks to be able to detect cracks by new crack detection tools, namely digital crack sensor and vision-based crack detection. The validated product of the experiment will be tested on the monument of Fraeylemaborg.