Dienst van SURF
© 2025 SURF
A literature review conducted as part of a research project named “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems” revealed several challenges regarding the safety metrics used in aviation. One of the conclusions was that there is limited empirical evidence about the relationship between Safety Management System (SMS) processes and safety outcomes. In order to explore such a relationship, respective data from 7 European airlines was analyzed to explore whether there is a monotonic relation between safety outcome metrics and SMS processes, operational activity and demographic data widely used by the industry. Few, diverse, and occasionally contradictory associations were found, indicating that (1) there is a limited value of linear thinking followed by the industry, i.e., “the more you do with an SMS the higher the safety performance”, (2) the diversity in SMS implementation across companies renders the sole use of output metrics not sufficient for assessing the impact of SMS processes on safety levels, and (3) only flight hours seem as a valid denominator in safety performance indicators. At the next phase of the research project, we are going to explore what alternative metrics can reflect SMS/safety processes and safety performance in a more valid manner
As part of their SMS, aviation service providers are required to develop and maintain the means to verify the safety performance of their organisation and to validate the effectiveness of safety risk controls. Furthermore, service providers must verify the safety performance of their organisation with reference to the safety performance indicators and safety performance targets of the SMS in support of their organisation’s safety objectives. However, SMEs lack sufficient data to set appropriate safety alerts and targets, or to monitor their performance, and no other objective criteria currently exist to measure the safety of their operations. The Aviation Academy of the Amsterdam University of Applied Sciences therefore took the initiative to develop alternative safety performance metrics. Based on a review of the scientific literature and a survey of existing safety metrics, we proposed several alternative safety metrics. After a review by industry and academia, we developed two alternative metrics into tools to help aviation organisations verify the safety performance of their organisations.The AVAV-SMS tool measures three areas within an organisation’s Safety Management System:• Institutionalisation (design and implementation along with time and internal/external process dependencies).• Capability (the extent to which managers have the capability to implement the SMS).• Effectiveness (the extent to which the SMS deliverables add value to the daily tasks of employees).The tool is scalable to the size and complexity of the organisation, which also makes it useful for small and medium-sized enterprises (SMEs). The AVAS-SCP tool also measures three areas in the organisation’s safety culture prerequisites to foster a positive safety culture:• Organisational plans (whether the company has designed/documented each of the safety cultureprerequisites).• Implementation (the extent to which the prerequisites are realised by the managers/supervisors acrossvarious organisational levels).• Perception (the degree to which frontline employees perceive the effects of managers’ actions relatedto safety culture).We field-tested these tools, demonstrating that they have adequate sensitivity to capture gaps between Work-as-Imagined (WaI) and Work-as-Done (WaD) across organisations. Both tools are therefore useful to organisations that want to self-assess their SMS and safety culture prerequisite levels and proceed to comparisons among various functions and levels and/or over time. Our field testing and observations during the turn-around processes of a regional airline confirm that significant differences exist between WaI and WaD. Although these differences may not automatically be detrimental to safety, gaining insight into them is clearly necessary to manage safety. We conceptually developed safety metrics based on the effectiveness of risk controls. However, these could not be fully field-tested within the scope of this research project. We recommend a continuation of research in this direction. We also explored safety metrics based on the scarcity of resources and system complexity. Again, more research is required here to determine whether these provide viable solutions.
This paper presents an alternative way to use records from safety investigations as a means to support the evaluation of safety management (SM) aspects. Datasets from safety investigation reports and progress records of an aviation organization were analyzed with the scope of assessing safety management’s role, speed of safety communication, timeliness of safety investigation processes and realization of safety recommendations, and the extent of convergence among SM and investigation teams. The results suggested an interfering role of the safety department, severe delays in safety investigations, timely implementation of recommendations, quick dissemination of investigation reports to the end-users, and a low ratio of investigation team recommendations included in the final safety investigation reports. The results were attributed to non-scalable safety investigation procedures, ineffective resource management, lack of consistent bidirectional communication, lack of investigators’ awareness about the overall organizational context, and a weak commitment of other departments to the realization of safety recommendations. The set of metrics and the combination of quantitative and qualitative methods presented in this paper can support organizations to the transition towards a performance-based evaluation of safety management.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
The project is a field study for several diverse hotel chains, including individual properties operated under the Marriott brand, Postillion Hotels. Each brand has unique values, missions, and visions. Therefore, this integration will lead to the development of company-specific sustainability strategies and processes. The study will use the model of levers of control to provide such tailor-made solutions and determine if a generic approach can be developed to match a corporate sustainability strategy with a corporate strategy and develop a supporting management control system for operationalizing the sustainability strategy. Research question: How can a hotel brand formulate and implement a sustainability strategy with a supporting management control system that not only complies with the new CSRD (Corporate Sustainability Reporting Directive) legislation but also emphasizes the creation of substantial value in financial and ESG (Environmental, Social, and Governance) aspects, based on double materiality, in line with the organization's corporate values and beliefs? Objective The aim is to develop a validated method, including tools, that hotels can use to create a sustainability strategy in line with the CSRD guidelines. This strategy should create value for the organization, the environment, and society, while aligning with the hotel's values and beliefs. Merely being compliant with the CSRD is not enough for hotels. Instead, they should view the implementation of the CSRD as an opportunity to stand out in terms of sustainability. By creating value in areas such as environment, safety, and governance, or through the six capitals (financial, manufactured, intellectual, human, social and relationship, and natural) that align with the UN-SDGs, and explicitly taking both an inside-out and an outside in perspective (double materiality), hotels can significantly enhance their sustainability reputation.
Restoring rivers with an integrated approach that combines water safety, nature development and gravel mining remains a challenge. Also for the Grensmaas, the most southern trajectory of the Dutch main river Maas, that crosses the border with Belgium in the south of Limburg. The first plans (“Plan Ooievaar”) were already developed in the 1980s and were highly innovative and controversial, as they were based on the idea of using nature-based solutions combined with social-economic development. Severe floodings in 1993 and 1995 came as a shock and accelerated the process to implement the associated measures. To address the multifunctionality of the river, the Grensmaas consortium was set up by public and private parties (the largest public-private partnership ever formed in the Netherlands) to have an effective, scalable and socially accepted project. However, despite the shared long term vision and the further development of plans during the process it was hard to satisfy all the goals in the long run. While stakeholders agreed on the long-term goal, the path towards that goal remains disputed and depends on the perceived status quo and urgency of the problem. Moreover, internal and external pressures and disturbances like climate change or the economic crisis influenced perception and economic conditions of stakeholders differently. In this research we will identify relevant system-processes connected to the implementation of nature-based solutions through the lens of social-ecological resilience. This knowledge will be used to co-create management plans that effectively improve the long-term resilience of the Dutch main water systems.