Dienst van SURF
© 2025 SURF
This paper describes a concept where products are equipped with agents that will assist in recycling and repairing the product. These so-called product agents represent the product in cyberspace and are capable to negotiate with other products in case of recycling or repair. Some product agents of broken products will offer spare parts, other agents will look for spare parts to repair a broken product. On the average this will enlarge the lifetime of a product and in some cases prevent wasting resources. Apart from reuse of spare parts these agents will also help to locate rare elements in a device, so these elements can be recycled more easily.
Our current take-make-dispose economic model faces a vital challenge as it extracts resources from the natural environment at faster rates than that the natural environment can replenish. A circular economy where businesses lower their negative impact on the natural environment by transitioning towards recycling business models (RBMs), one of the four principles of circularity, is suggested as a promising solution. For a RBM to become viable, collaboration among several stakeholders and across several industries is required. In addition, the RBM should be scalable to make a positive impact. Hence, developing RBMs is complex as organizations need to consider multiple principles imposed by the recycling, collaborative, and scalability dimensions of these business models (BMs). In addition, these principles often remain general and not actionable to the practitioners. Therefore, in this study, we researched the practical guidelines for viable RBMs that are also collaborative and scalable. The empirical setting is the reuse of textile fibers to develop biocomposite products. We studied three cases using a research-through-design approach. We contribute to the literature on RBMs by showing the six minimum practical guidelines for recyclability, collaboration, and scalability. We draw implications for within sector collaborations and advance the thought that lease constructs challenge the scalability of RBM.
MULTIFILE
For the recycling of carpet and artificial turf the latex backing is often a real stumble block. Many strategies have been developed like freezing the carpet, followed by grinding and subsequent separation of the milled particles. Once it has been separated from its backing materials, PA 6 is relatively easy to depolymerise. This produces fresh caprolactam that can be used to manufacture PA 6 with no loss in quality, and is suitable for further recycling [1]. The comparable process for PA 6,6 is not as easy, but DuPont and Polyamid 2000 have developed and patented a process that depolymerises any mixture of PA 6 and 6,6 using ammonia. The result is fresh caprolactam and 1,6 diaminohexane for manufacture of PA 6 and 6,6 respectively [2]. Obviously a lot of research has been devoted to avoiding latex as a backing like e.g. polyurethane carpet backing systems based on natural oil polyols and polymer polyols [4]. Still carboxylated styrene butadiene is the leading synthetic latex polymer used in EU-27 for carpet backing, followed by styrene-acrylics and pure acrylics. This contrasts with Eastern Europe, Russia, and Turkey where styrene-acrylics dominate, followed by PVAc and redispersible powders [3]. In addition there has been a lot of research into developing alternative backing systems where the backing can easily be removed. Examples are the use of gecko technology [5] or using click chemistry (reversible Diels Alder reactions) [6]. But the best option for recycling is of course to develop carpets based completely on monomaterials. Paper for the 14th Autex World Textile Conference May 26th-28th 2014, Bursa, Turkey.
MULTIFILE
The production of denim makes a significant contribution to the environmental impact of the textile industry. The use of mechanically recycled fibers is proven to lower this environmental impact. MUD jeans produce denim using a mixture of virgin and mechanically recycled fibers and has the goal to produce denim with 100% post-consumer textile by 2020. However, denim fabric with 100% mechanically recycled fibers has insufficient mechanical properties. The goal of this project is to investigate the possibilities to increase the content of recycled post-consumer textile fibers in denim products using innovative recycling process technologies.
In this proposal, a consortium of knowledge institutes (wo, hbo) and industry aims to carry out the chemical re/upcycling of polyamides and polyurethanes by means of an ammonolysis, a depolymerisation reaction using ammonia (NH3). The products obtained are then purified from impurities and by-products, and in the case of polyurethanes, the amines obtained are reused for resynthesis of the polymer. In the depolymerisation of polyamides, the purified amides are converted to the corresponding amines by (in situ) hydrogenation or a Hofmann rearrangement, thereby forming new sources of amine. Alternatively, the amides are hydrolysed toward the corresponding carboxylic acids and reused in the repolymerisation towards polyamides. The above cycles are particularly suitable for end-of-life plastic streams from sorting installations that are not suitable for mechanical/chemical recycling. Any loss of material is compensated for by synthesis of amines from (mixtures of) end-of-life plastics and biomass (organic waste streams) and from end-of-life polyesters (ammonolysis). The ammonia required for depolymerisation can be synthesised from green hydrogen (Haber-Bosch process).By closing carbon cycles (high carbon efficiency) and supplementing the amines needed for the chain from biomass and end-of-life plastics, a significant CO2 saving is achieved as well as reduction in material input and waste. The research will focus on a number of specific industrially relevant cases/chains and will result in economically, ecologically (including safety) and socially acceptable routes for recycling polyamides and polyurethanes. Commercialisation of the results obtained are foreseen by the companies involved (a.o. Teijin and Covestro). Furthermore, as our project will result in a wide variety of new and drop-in (di)amines from sustainable sources, it will increase the attractiveness to use these sustainable monomers for currently prepared and new polyamides and polyurethanes. Also other market applications (pharma, fine chemicals, coatings, electronics, etc.) are foreseen for the sustainable amines synthesized within our proposition.
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.