Dienst van SURF
© 2025 SURF
This review paper investigates and presents generalized answers to the two basic questions of port governance, namely how to govern and for what purpose. The study is based on a total sample of 118 studies on port governance. The results from the analysis of these studies show that port devolution and port re-centralization are the main governance tools at the institutional level. At the strategical level, the main governance tools are port co-opetition, port regionalization, port integration, stakeholder management strategy, and corporate governance. While at the managerial level, the main governance tools are port pricing, port concession, port user/customer relationship management, monitoring and measuring, regulatory control, port security management, and information and communication technologies. The institutional governance tools are generally used by governmental organizations to set the fundamental regulative rules for the port governance system, while strategical tools are applied by port organizations in gaining competitive advantages and increasing market share in the long term. Managerial tools are related to the port business operations and management. Furthermore, The study clearly shows that the main objective of port governance is the improvement of port efficiency and port effectiveness. However, the choice of efficiency-oriented or effectiveness-oriented configuration is largely determined by the port organization's external operating environment, strategies and structures.
Third chapter of the English version of the book 'Energieke Arbeid' published by the Centre of Applied Labour Market Research and Innovation (Dutch abbreviation: KCA) to celebrate the 10th anniversary of applied labour market research at Hanze University of Applied Sciences. This chapter discusses the second line of research of KCA: The Labour Market in the EnergyPort Groningen Region.
Background: Impaired upper extremity function due to muscle paresis or paralysis has a major impact on independent living and quality of life (QoL). Assistive technology (AT) for upper extremity function (i.e. dynamic arm supports and robotic arms) can increase a client’s independence. Previous studies revealed that clients often use AT not to their full potential, due to suboptimal provision of these devices in usual care. Objective: To optimize the process of providing AT for impaired upper extremity function and to evaluate its (cost-)effectiveness compared with care as usual. Methods: Development of a protocol to guide the AT provision process in an optimized way according to generic Dutch guidelines; a quasi-experimental study with non-randomized, consecutive inclusion of a control group (n = 48) receiving care as usual and of an intervention group (optimized provision process) (n = 48); and a cost-effectiveness and cost-utility analysis from societal perspective will be performed. The primary outcome is clients’ satisfaction with the AT and related services, measured with the Quebec User Evaluation of Satisfaction with AT (Dutch version; D-QUEST). Secondary outcomes comprise complaints of the upper extremity, restrictions in activities, QoL, medical consumption and societal cost. Measurements are taken at baseline and at 3, 6 and 9 months follow-up.
The livability of the cities and attractiveness of our environment can be improved by smarter choices for mobility products and travel modes. A change from current car-dependent lifestyles towards the use of healthier and less polluted transport modes, such as cycling, is needed. With awareness campaigns, cycling facilities and cycle infrastructure, the use of the bicycle will be stimulated. But which campaigns are effective? Can we stimulate cycling by adding cycling facilities along the cycle path? How can we design the best cycle infrastructure for a region? And what impact does good cycle infrastructure have on the increase of cycling?To find answers for these questions and come up with a future approach to stimulate bicycle use, BUas is participating in the InterReg V NWE-project CHIPS; Cycle Highways Innovation for smarter People transport and Spatial planning. Together with the city of Tilburg and other partners from The Netherlands, Belgium, Germany and United Kingdom we explore and demonstrate infrastructural improvements and tackle crucial elements related to engaging users and successful promotion of cycle highways. BUas is responsible for the monitoring and evaluation of the project. To measure the impact and effectiveness of cycle highway innovations we use Cyclespex and Cycleprint.With Cyclespex a virtual living lab is created which we will use to test several readability and wayfinding measures for cycle infrastructure. Cyclespex gives us the opportunity to test different scenario’s in virtual reality that will help us to make decisions about the final solution that will be realized on the cycle highway. Cycleprint will be used to develop a monitoring dashboard where municipalities of cities can easily monitor and evaluate the local bicycle use.
Effectiveness of Supported Education for students with mental health problems, an experimental study.The onset of mental health problems generally occurs between the ages of 16 and 23 – the years in which young people follow postsecondary education, which is a major channel in ourso ciety to prepare for a career and enhance life goals. Several studies have shown that students with mental health problems have a higher chance of early school leaving. Supported Education services have been developed to support students with mental health to remain at school. The current project aims to study the effect of an individually tailored Supported Education intervention on educational and mental health outcomes of students with mental health problems at a university of applied sciences and a community college. To that end, a mixed methods design will be used. This design combines quantitative research (Randomized Controlled Trial) with qualitative research (focus groups, monitoring, interviews). 100 students recruited from the two educational institutes will be randomly allocated to either the intervention or control group.
The Netherlands has approximately 220,000 industrial accidents per year (with 60 people who die). That is why every employer is obliged to organize company emergency response (BHV), including emergency response training. Despite this, only one-third of all companies map out their occupational risks via a Risk Inventory & Evaluation (RI&E) and the share of employees with an occupational accident remains high. That is why there is continuous innovation to optimize emergency response training, for example by means of Virtual Reality (VR). VR is not new, but it has evolved and become more affordable. VR offers the possibility to develop safe realistic emergency response simulations where the student has the feeling that they are really there. Despite the increase in VR-BHV training, little research has been done on the effect of VR in ER training and results are contradictory. In addition, there are new technological developments that make it possible to measure viewing behavior in VR using Eye-Tracking. During an emergency response training, Eye-Tracking can be used to measure how an instruction is followed, whether students are distracted and observe important elements (danger and solutions) during the simulation. However, emergency response training with VR and Eye-Tracking (interactions) does not exist. In this project, a prototype is being developed in which Eye-Tracking is incorporated into a VR-BHV training that was developed in 2021, in which emergency situations such as an office fire are simulated (the BHVR application). The prototype will be tested by means of an experiment in order to partly answer the question to what extent and in what way Eye-Tracking in VR offers added value for (RI&E) emergency response training. This project is therefore in line with the mission-driven innovation policy 'The Safety Professional' and helps SMEs that often lack resources and knowledge for research into the effectiveness of innovative technologies in education/training. The project will include a prototype, a production report and research article, and is open to new participants when writing a larger application about the application and effect of VR and Eye-Tracking in emergency response training.