Dienst van SURF
© 2025 SURF
Since the beginning of the new millennium, the use of mental practice and movement imagery within several medical professions in rehabilitation and therapy has received an increased attention. Before this introduction in healthcare, the use of movement imagery was mainly researched in sports science. Mental practice is a complex intervention. When a complex intervention is applied in a new target group or population, the intervention is most likely needed to be adjusted, developed, and evaluated. Recently, a dissertation has been published in which the researchers describe their efforts to transfer the use of movement imagery in sports to rehabilitation. This study reports two aspects from this research project: (a) What did the researcher do? (b) What do the results mean for future research? First, however, some background information is given, in which the use of movement imagery in athletes is discussed.
Background Movement behaviors (i.e., physical activity levels, sedentary behavior) in people with stroke are not self-contained but cluster in patterns. Recent research identified three commonly distinct movement behavior patterns in people with stroke. However, it remains unknown if movement behavior patterns remain stable and if individuals change in movement behavior pattern over time. Objectives 1) To investigate the stability of the composition of movement behavior patterns over time, and 2) determine if individuals change their movement behavior resulting in allocation to another movement behavior pattern within the first two years after discharge to home in people with a first-ever stroke. Methods Accelerometer data of 200 people with stroke of the RISE-cohort study were analyzed. Ten movement behavior variables were compressed using Principal Componence Analysis and K-means clustering was used to identify movement behavior patterns at three weeks, six months, one year, and two years after home discharge. The stability of the components within movement behavior patterns was investigated. Frequencies of individuals’ movement behavior pattern and changes in movement behavior pattern allocation were objectified. Results The composition of the movement behavior patterns at discharge did not change over time. At baseline, there were 22% sedentary exercisers (active/sedentary), 45% sedentary movers (inactive/sedentary) and 33% sedentary prolongers (inactive/highly sedentary). Thirty-five percent of the stroke survivors allocated to another movement behavior pattern within the first two years, of whom 63% deteriorated to a movement behavior pattern with higher health risks. After two years there were, 19% sedentary exercisers, 42% sedentary movers, and 39% sedentary prolongers. Conclusions The composition of movement behavior patterns remains stable over time. However, individuals change their movement behavior. Significantly more people allocated to a movement behavior pattern with higher health risks. The increase of people allocated to sedentary movers and sedentary prolongers is of great concern. It underlines the importance of improving or maintaining healthy movement behavior to prevent future health risks after stroke.
MULTIFILE
Dynamic body feedback is used in dance movement therapy (DMT), with the aim to facilitate emotional expression and a change of emotional state through movement and dance for individuals with psychosocial or psychiatric complaints. It has been demonstrated that moving in a specific way can evoke and regulate related emotions. The current study aimed to investigate the effects of executing a unique set of kinetic movement elements on an individual mover’s experience of happiness. A specific sequence consisting of movement elements that recent studies have related to the feeling of happiness was created and used in a series of conditions. To achieve a more realistic reflection of DMT practice, the study incorporated the interpersonal dimension between the dance movement therapist (DMTh) and the client, and the impact of this interbodily feedback on the emotional state of the client. This quantitative study was conducted in a within-subject design. Five male and 20 female participants (mean age = 20.72) participated in three conditions: a solo executed movement sequence, a movement sequence executed with a DMTh who attuned and mirrored the movements, and a solo executed movement sequence not associated with feelings of happiness. Participants were only informed about the movements and not the feelings that may be provoked by these movements. The effects on individuals were measured using the Positive and Negative Affect Schedule and visual analog scales. Results showed that a specific movement sequence based on movement elements associated with happiness executed with a DMTh can significantly enhance the corresponding affective state. An additional finding of this study indicated that facilitating expressed emotion through movement elements that are not associated with happiness can enhance feelings such as empowerment, pride, and determination, which are experienced as part of positive affect. The results show the impact of specific fullbody movement elements on the emotional state and the support outcome of DMT on emotion regulation.
Creating and testing the first Brand Segmentation Model in Augmented Reality using Microsoft Hololens. Sanoma together with SAMR launched an online brand segmentation tool based on large scale research, The brand model uses several brand values divided over three axes. However they cannot be displayed clearly in a 2D model. The space of BSR Quality Planner can be seen as a 3-dimensional meaningful space that is defined by the terms used to typify the brands. The third axis concerns a behaviour-based dimension: from ‘quirky behaviour’ to ‘standardadjusted behaviour’ (respectful, tolerant, solidarity). ‘Virtual/augmented reality’ does make it possible to clearly display (and experience) 3D. The Academy for Digital Entertainment (ADE) of Breda University of Applied Sciences has created the BSR Quality Planner in Virtual Reality – as a hologram. It’s the world’s first segmentation model in AR. Breda University of Applied Sciences (professorship Digital Media Concepts) has deployed hologram technology in order to use and demonstrate the planning tool in 3D. The Microsoft HoloLens can be used to experience the model in 3D while the user still sees the actual surroundings (unlike VR, with AR the space in which the user is active remains visible). The HoloLens is wireless, so the user can easily walk around the hologram. The device is operated using finger gestures, eye movements or voice commands. On a computer screen, other people who are present can watch along with the user. Research showed the added value of the AR model.Partners:Sanoma MediaMarketResponse (SAMR)
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.