Dienst van SURF
© 2025 SURF
Event-related potentials (ERPs) have been used for decades to study perception, cognition, emotion, neurological and psychiatric disorders, and lifespan development. ERPs consist of multiple components and reflect a specific neurocognitive process. In the past, there was no single source that could be consulted to learn about all the major ERP components; learning about a single ERP component required reading dozens or even hundreds of separate journal articles and book chapters. The Oxford Handbook of Event-Related Potential Components fills this void with a detailed review of the major ERP components. The book looks at the fundamental nature of ERP components, including essential information about how ERP components are defined and isolated. It explains in detail individual components, such as the N170, P300, and ERN. It further examines groups of related components within specific research domains, such as language, emotion, and memory. Finally, it analyses ERP components in special populations, including children, the elderly, nonhuman primates, and patients with neurological disorders, affective disorders, and schizophrenia.
LINK
We examined the neural correlates of facial attractiveness by presenting pictures of male or female faces (neutral expression) with low/intermediate/high attractiveness to 48 male or female participants while recording their electroencephalogram (EEG). Subjective attractiveness ratings were used to determine the 10% highest, 10% middlemost, and 10% lowest rated faces for each individual participant to allow for high contrast comparisons. These were then split into preferred and dispreferred gender categories. ERP components P1, N1, P2, N2, early posterior negativity (EPN), P300 and late positive potential (LPP) (up until 3000 ms post-stimulus), and the face specific N170 were analysed. A salience effect (attractive/unattractive > intermediate) in an early LPP interval (450–850 ms) and a long-lasting valence related effect (attractive > unattractive) in a late LPP interval (1000–3000 ms) were elicited by the preferred gender faces but not by the dispreferred gender faces. Multi-variate pattern analysis (MVPA)-classifications on whole-brain single-trial EEG patterns further confirmed these salience and valence effects. It is concluded that, facial attractiveness elicits neural responses that are indicative of valenced experiences, but only if these faces are considered relevant. These experiences take time to develop and last well beyond the interval that is commonly explored.
MULTIFILE
When an adult claims he cannot sleep without his teddy bear, people tend to react surprised. Language interpretation is, thus, influenced by social context, such as who the speaker is. The present study reveals inter-individual differences in brain reactivity to social aspects of language. Whereas women showed brain reactivity when stereotype-based inferences about a speaker conflicted with the content of the message, men did not. This sex difference in social information processing can be explained by a specific cognitive trait, one's ability to empathize. Individuals who empathize to a greater degree revealed larger N400 effects (as well as a larger increase in γ-band power) to socially relevant information. These results indicate that individuals with high-empathizing skills are able to rapidly integrate information about the speaker with the content of the message, as they make use of voice-based inferences about the speaker to process language in a top-down manner. Alternatively, individuals with lower empathizing skills did not use information about social stereotypes in implicit sentence comprehension, but rather took a more bottom-up approach to the processing of these social pragmatic sentences.
MULTIFILE
De technische en economische levensduur van auto’s verschilt. Een goed onderhouden auto met dieselmotor uit het bouwjaar 2000 kan technisch perfect functioneren. De economische levensduur van diezelfde auto is echter beperkt bij introductie van strenge milieuzones. Bij de introductie en verplichtstelling van geavanceerde rijtaakondersteunende systemen (ADAS) zien we iets soortgelijks. Hoewel de auto technisch gezien goed functioneert kunnen verouderde software, algorithmes en sensoren leiden tot een beperkte levensduur van de gehele auto. Voorbeelden: - Jeep gehackt: verouderde veiligheidsprotocollen in de software en hardware beperkten de economische levensduur. - Actieve Cruise Control: sensoren/radars van verouderde systemen leiden tot beperkte functionaliteit en gebruikersacceptatie. - Tesla: bij bestaande auto’s worden verouderde sensoren uitgeschakeld waardoor functies uitvallen. In 2019 heeft de EU een verplichting opgelegd aan automobielfabrikanten om 20 nieuwe ADAS in te bouwen in nieuw te ontwikkelen auto’s, ongeacht prijsklasse. De mate waarin deze ADAS de economische levensduur van de auto beperkt is echter nog onvoldoende onderzocht. In deze KIEM wordt dit onderzocht en wordt tevens de parallel getrokken met de mobiele telefonie; beide maken gebruik van moderne sensoren en software. We vergelijken ontwerpeisen van telefoons (levensduur van gemiddeld 2,5 jaar) met de eisen aan moderne ADAS met dezelfde sensoren (levensduur tot 20 jaar). De centrale vraag luidt daarom: Wat is de mogelijke impact van veroudering van ADAS op de economische levensduur van voertuigen en welke lessen kunnen we leren uit de onderliggende ontwerpprincipes van ADAS en Smartphones? De vraag wordt beantwoord door (i) literatuuronderzoek naar de veroudering van ADAS (ii) Interviews met ontwerpers van ADAS, leveranciers van retro-fit systemen en ontwerpers van mobiele telefoons en (iii) vergelijkend rij-onderzoek naar het functioneren van ADAS in auto’s van verschillende leeftijd en prijsklassen.
Various companies in diagnostic testing struggle with the same “valley of death” challenge. In order to further develop their sensing application, they rely on the technological readiness of easy and reproducible read-out systems. Photonic chips can be very sensitive sensors and can be made application-specific when coated with a properly chosen bio-functionalized layer. Here the challenge lies in the optical coupling of the active components (light source and detector) to the (disposable) photonic sensor chip. For the technology to be commercially viable, the price of the disposable photonic sensor chip should be as low as possible. The coupling of light from the source to the photonic sensor chip and back to the detectors requires a positioning accuracy of less than 1 micrometer, which is a tremendous challenge. In this research proposal, we want to investigate which of the six degrees of freedom (three translational and three rotational) are the most crucial when aligning photonic sensor chips with the external active components. Knowing these degrees of freedom and their respective range we can develop and test an automated alignment tool which can realize photonic sensor chip alignment reproducibly and fully autonomously. The consortium with expertise and contributions in the value chain of photonics interfacing, system and mechanical engineering will investigate a two-step solution. This solution comprises a passive pre-alignment step (a mechanical stop determines the position), followed by an active alignment step (an algorithm moves the source to the optimal position with respect to the chip). The results will be integrated into a demonstrator that performs an automated procedure that aligns a passive photonic chip with a terminal that contains the active components. The demonstrator is successful if adequate optical coupling of the passive photonic chip with the external active components is realized fully automatically, without the need of operator intervention.
The focus of the research is 'Automated Analysis of Human Performance Data'. The three interconnected main components are (i)Human Performance (ii) Monitoring Human Performance and (iii) Automated Data Analysis . Human Performance is both the process and result of the person interacting with context to engage in tasks, whereas the performance range is determined by the interaction between the person and the context. Cheap and reliable wearable sensors allow for gathering large amounts of data, which is very useful for understanding, and possibly predicting, the performance of the user. Given the amount of data generated by such sensors, manual analysis becomes infeasible; tools should be devised for performing automated analysis looking for patterns, features, and anomalies. Such tools can help transform wearable sensors into reliable high resolution devices and help experts analyse wearable sensor data in the context of human performance, and use it for diagnosis and intervention purposes. Shyr and Spisic describe Automated Data Analysis as follows: Automated data analysis provides a systematic process of inspecting, cleaning, transforming, and modelling data with the goal of discovering useful information, suggesting conclusions and supporting decision making for further analysis. Their philosophy is to do the tedious part of the work automatically, and allow experts to focus on performing their research and applying their domain knowledge. However, automated data analysis means that the system has to teach itself to interpret interim results and do iterations. Knuth stated: Science is knowledge which we understand so well that we can teach it to a computer; and if we don't fully understand something, it is an art to deal with it.[Knuth, 1974]. The knowledge on Human Performance and its Monitoring is to be 'taught' to the system. To be able to construct automated analysis systems, an overview of the essential processes and components of these systems is needed.Knuth Since the notion of an algorithm or a computer program provides us with an extremely useful test for the depth of our knowledge about any given subject, the process of going from an art to a science means that we learn how to automate something.