Service of SURF
© 2025 SURF
Abstract: Since the first Oxford Survey of Childhood Cancer’s results were published, people have become more aware of the risks associated with prenatal exposure from diagnostic x rays. As a result, it has since been the subject of many studies. In this review, the results of recent epidemiological studies are summarized. The current international guidelines for diagnostic x-ray examinations were compared to the review. All epidemiological studies starting from 2007 and all relevant international guidelines were included. Apart from one study that involved rhabdomyosarcoma, no statistically significant associations were found between prenatal exposure to x rays and the development of cancer during 2007–2020. Most of the studies were constrained in their design due to too small a cohort or number of cases, minimal x-ray exposure, and/or data obtained from the exposed mothers instead of medical reports. In one of the studies, computed tomography exposure was also included, and this requires more and longer follow-up in successive studies. Most international guidelines are comparable, provide risk coefficients that are quite conservative, and discourage abdominal examinations of pregnant women.
BACKGROUND: Visceral obesity is associated with the metabolic syndrome. The metabolic risk differs per ethnicity, but reference values for visceral obesity for body composition analyses using Computed Tomography (CT) scans in the Caucasian population are lacking. Therefore, the aim of this study was to define gender specific reference values for visceral obesity in a Caucasian cohort based upon the association between the amount of visceral adipose tissue (VAT) and markers of increased metabolic risk.METHODS: Visceral Adipose Tissue Area Index (VATI cm 2/m 2) at the level of vertebra L3 was analyzed using CT scans of 416 healthy living kidney donor candidates. The use of antihypertensive drugs and/or statins was used as an indicator for increased metabolic risk. Gender specific cut-off values for VATI with a sensitivity ≥80% were calculated using receiver operating characteristic (ROC) curves. RESULTS: In both men and women who used antihypertensive drugs, statins or both, VATI was higher than in those who did not use these drugs (p ≤ 0.013). In males and females respectively, a value of VATI of ≥38.7 cm 2/m 2 and ≥24.9 cm 2/m 2 was associated with increased metabolic risk with a sensitivity of 80%. ROC analysis showed that VATI was a better predictor of increased metabolic risk than BMI (area under ROC curve (AUC) = 0.702 vs AUC = 0.556 in males and AUC = 0.757 vs AUC = 0.630 in females). CONCLUSION: Gender and ethnicity specific cut-off values for visceral obesity are important in body composition research, although further validation is needed. This study also showed that quantification of VATI is a better predictor for metabolic risk than BMI.
Background & aims: Low muscle mass and -quality on ICU admission, as assessed by muscle area and -density on CT-scanning at lumbar level 3 (L3), are associated with increased mortality. However, CT-scan analysis is not feasible for standard care. Bioelectrical impedance analysis (BIA) assesses body composition by incorporating the raw measurements resistance, reactance, and phase angle in equations. Our purpose was to compare BIA- and CT-derived muscle mass, to determine whether BIA identified the patients with low skeletal muscle area on CT-scan, and to determine the relation between raw BIA and raw CT measurements. Methods: This prospective observational study included adult intensive care patients with an abdominal CT-scan. CT-scans were analysed at L3 level for skeletal muscle area (cm2) and skeletal muscle density (Hounsfield Units). Muscle area was converted to muscle mass (kg) using the Shen equation (MMCT). BIA was performed within 72 h of the CT-scan. BIA-derived muscle mass was calculated by three equations: Talluri (MMTalluri), Janssen (MMJanssen), and Kyle (MMKyle). To compare BIA- and CT-derived muscle mass correlations, bias, and limits of agreement were calculated. To test whether BIA identifies low skeletal muscle area on CT-scan, ROC-curves were constructed. Furthermore, raw BIA and CT measurements, were correlated and raw CT-measurements were compared between groups with normal and low phase angle. Results: 110 patients were included. Mean age 59 ± 17 years, mean APACHE II score 17 (11–25); 68% male. MMTalluri and MMJanssen were significantly higher (36.0 ± 9.9 kg and 31.5 ± 7.8 kg, respectively) and MMKyle significantly lower (25.2 ± 5.6 kg) than MMCT (29.2 ± 6.7 kg). For all BIA-derived muscle mass equations, a proportional bias was apparent with increasing disagreement at higher muscle mass. MMTalluri correlated strongest with CT-derived muscle mass (r = 0.834, p < 0.001) and had good discriminative capacity to identify patients with low skeletal muscle area on CT-scan (AUC: 0.919 for males; 0.912 for females). Of the raw measurements, phase angle and skeletal muscle density correlated best (r = 0.701, p < 0.001). CT-derived skeletal muscle area and -density were significantly lower in patients with low compared to normal phase angle. Conclusions: Although correlated, absolute values of BIA- and CT-derived muscle mass disagree, especially in the high muscle mass range. However, BIA and CT identified the same critically ill population with low skeletal muscle area on CT-scan. Furthermore, low phase angle corresponded to low skeletal muscle area and -density. Trial registration: ClinicalTrials.gov (NCT02555670).