Service of SURF
© 2025 SURF
The Internet and computers increasingly determine our daily lives. This goes for almost everyone in the Netherlands. Still, it is mostly teenagers who are well informed on how to use all the possibilities of new technologies. They are building a digital world of their own that parents usually know very little about. This booklet intends to inform teachers, parents and other interested parties on what teenagers are actually doing online and how important it is to keep abreast of the new developments that the Internet and computers bring into their world. On the basis of research into these issues in the Netherlands and abroad we attempt to indicate what the digital world of teenagers looks like and how it differs from that of grown-ups. What do they do, exactly, and why? We also look into teenagers’ ICT behaviour and into dangers and abuse of the Internet. Moreover we provide tips for parents and teachers on how to handle certain phenomena. This book does not pretend to provide an exhaustive overview of the digital world of teenagers. It is focused on some important characteristics and parts of that world. It reports on research of the INHOLLAND Centre for eLearning into various aspects of ICT behaviour among teenagers. The research was undertaken in the spring of 2006, focusing mainly on texting, networking, gaming, dangers and abuse on the Internet and the digital relation between school and the home. Ultimately we are especially concerned with the question of what teenagers really learn in their digital world, and how education can profit. This book also addresses that issue.
Social issues are becoming increasingly pressing. From dementia to climate change to corona; we as people, citizens, residents and city users - through our own experience or otherwise - have a sense of them. However, truly understanding and addressing these issues is difficult because there is no single owner. Everything is related, intertwined and also changing. Getting an overview and deciding together on necessary steps proves difficult. Complex issues thus become orphaned. Design and more specifically co-design - creative collaboration with others - is increasingly seen as a possible approach to these such issues and collaborations because it can deal with complexity and uncertainty, is optimistic and investigative in nature. With a co-design approach, we can find a shared desire and with that we connect with each other. By then searching together for mechanisms that can lead to the desired values, we gain insights on how to tilt a problematic situation. That enables us to imagine alternative futures. These help us on our way to a better, greener and more social world and social change.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Worldwide, coral reefs are rapidly declining due to increased sea water temperatures and other environmental stresses (Figure 1). To counter the extinction of major coral reef building species on the island of Bonaire, the non-profit organization Reef Renewal Foundation Bonaire is restoring degraded reef sites using corals that are grown in local nurseries. In these nurseries, corals are propagated on artificial trees using fragmentation. After 6-8 months of growth in the nursery, the corals are transplanted to degraded reef sites around the island. Over the years more than 21.000 corals have been outplanted to reef restoration sites in this way. These corals show high survivorship under natural reef conditions but remain under threat by environmental disturbances, such as increased water temperatures, diseases, and competition with macroalgae. A promising intervention to increase reef persistence and resilience is to manipulate the coral-associated microbiome. At present, the composition of the microbiome in nursery-reared and outplanted corals on Bonaire is unknown. The aim of the current project is to identify and isolate naturally occurring beneficial bacteria that may stimulate the resilience of these corals. Our key objectives are: 1) to assess the presence of functionally beneficial bacteria in corals in nursery and restoration sites on Bonaire using metagenomic screening. 2) to design culture strategies to isolate these functionally beneficial bacteria. In the future, a selection of these beneficial bacteria can be applied to the corals to increase their resilience against environmental disturbances.
The textile and clothing sector belongs to the world’s biggest economic activities. Producing textiles is highly energy-, water- and chemical-intensive and consequently the textile industry has a strong impact on environment and is regarded as the second greatest polluter of clean water. The European textile industry has taken significant steps taken in developing sustainable manufacturing processes and materials for example in water treatment and the development of biobased and recycled fibres. However, the large amount of harmful and toxic chemicals necessary, especially the synthetic colourants, i.e. the pigments and dyes used to colour the textile fibres and fabrics remains a serious concern. The limited range of alternative natural colourants that is available often fail the desired intensity and light stability and also are not provided at the affordable cost . The industrial partners and the branch organisations Modint and Contactgroep Textiel are actively searching for sustainable alternatives and have approached Avans to assist in the development of the colourants which led to the project Beauti-Fully Biobased Fibres project proposal. The objective of the Beauti-Fully Biobased Fibres project is to develop sustainable, renewable colourants with improved light fastness and colour intensity for colouration of (biobased) man-made textile fibres Avans University of Applied Science, Zuyd University of Applied Sciences, Wageningen University & Research, Maastricht University and representatives from the textile industry will actively collaborate in the project. Specific approaches have been identified which build on knowledge developed by the knowledge partners in earlier projects. These will now be used for designing sustainable, renewable colourants with the improved quality aspects of light fastness and intensity as required in the textile industry. The selected approaches include refining natural extracts, encapsulation and novel chemical modification of nano-particle surfaces with chromophores.