Service of SURF
© 2025 SURF
Research into automatic text simplification aims to promote access to information for all members of society. To facilitate generalizability, simplification research often abstracts away from specific use cases, and targets a prototypical reader and an underspecified content creator. In this paper, we consider a real-world use case – simplification technology for use in Dutch municipalities – and identify the needs of the content creators and the target audiences in this scenario. The stakeholders envision a system that (a) assists the human writer without taking over the task; (b) provides diverse outputs, tailored for specific target audiences; and (c) explains the suggestions that it outputs. These requirements call for technology that is characterized by modularity, explainability, and variability. We argue that these are important research directions that require further exploration
MULTIFILE
Robots are increasingly used in a variety of work environments, but surprisingly little attention has been paid to how robots change work. In this comparative case study, we explore how robotization changed the work design of order pickers and order packers in eight logistic warehouses. We found that all warehouses robotized tasks based on technological functionality to increase efficiency, which sometimes created jobs consisting of ‘left-over tasks’. Only two warehouses used a bottom-up approach, where employees were involved in the implementation and quality of work was considered important. Although the other warehouses did not, sometimes their work design still benefitted from robotization. The positive effects we identified are reduced physical and cognitive demands and opportunities for upskilling. Warehouses that lack attention to the quality of work may risk ending up with the negative effects for employees, such as simplification and intensification of work, and reduced autonomy. We propose that understanding the consequences of robots on work design supports HR professionals to help managing this transition by both giving relevant input on a strategic level about the importance of work design and advocating for employees and their involvement.
Artificial intelligence-driven technology increasingly shapes work practices and, accordingly, employees’ opportunities for meaningful work (MW). In our paper, we identify five dimensions of MW: pursuing a purpose, social relationships, exercising skills and self-development, autonomy, self-esteem and recognition. Because MW is an important good, lacking opportunities for MW is a serious disadvantage. Therefore, we need to know to what extent employers have a duty to provide this good to their employees. We hold that employers have a duty of beneficence to design for opportunities for MW when implementing AI-technology in the workplace. We argue that this duty of beneficence is supported by the three major ethical theories, namely, Kantian ethics, consequentialism, and virtue ethics. We defend this duty against two objections, including the view that it is incompatible with the shareholder theory of the firm. We then employ the five dimensions of MW as our analytical lens to investigate how AI-based technological innovation in logistic warehouses has an impact, both positively and negatively, on MW, and illustrate that design for MW is feasible. We further support this practical feasibility with the help of insights from organizational psychology. We end by discussing how AI-based technology has an impact both on meaningful work (often seen as an aspirational goal) and decent work (generally seen as a matter of justice). Accordingly, ethical reflection on meaningful and decent work should become more integrated to do justice to how AI-technology inevitably shapes both simultaneously.