In wheelchair sports, there is an increasing need to monitor mechanical power in the field. When rolling resistance is known, inertial measurement units (IMUs) can be used to determine mechanical power. However, upper body (i.e., trunk) motion affects the mass distribution between the small front and large rear wheels, thus affecting rolling resistance. Therefore, drag tests – which are commonly used to estimate rolling resistance – may not be valid. The aim of this study was to investigate the influence of trunk motion on mechanical power estimates in hand-rim wheelchair propulsion by comparing instantaneous resistance-based power loss with drag test-based power loss. Experiments were performed with no, moderate and full trunk motion during wheelchair propulsion. During these experiments, power loss was determined based on 1) the instantaneous rolling resistance and 2) based on the rolling resistance determined from drag tests (thus neglecting the effects of trunk motion). Results showed that power loss values of the two methods were similar when no trunk motion was present (mean difference [MD] of 0.6 1.6 %). However, drag test-based power loss was underestimated up to −3.3 2.3 % MD when the extent of trunk motion increased (r = 0.85). To conclude, during wheelchair propulsion with active trunk motion, neglecting the effects of trunk motion leads to an underestimated mechanical power of 1 to 6 % when it is estimated with drag test values. Depending on the required accuracy and the amount of trunk motion in the target group, the influence of trunk motion on power estimates should be corrected for.
Background Wheelchair tennis, a globally popular sport, features a professional tour spanning 40 countries and over 160 tournaments. Despite its widespread appeal, information about the physical demands of wheelchair tennis is scattered across various studies, necessitating a comprehensive systematic review to synthesise available data. Objective The aim was to provide a detailed synthesis of the physical demands associated with wheelchair tennis, encompassing diverse factors such as court surfaces, performance levels, sport classes, and sexes. Methods We conducted comprehensive searches in the PubMed, Embase, CINAHL, and SPORTDiscus databases, covering articles from inception to March 1, 2023. Forward and backward citation tracking from the included articles was carried out using Scopus, and we established eligibility criteria following the Population, Exposure, Comparison, Outcome, and Study design (PECOS) framework. Our study focused on wheelchair tennis players participating at regional, national, or international levels, including both juniors and adults, and open and quad players. We analysed singles and doubles matches and considered sex (male, female), sport class (open, quad), and court surface type (hard, clay, grass) as key comparative points. The outcomes of interest encompassed play duration, on-court movement, stroke performance, and physiological match variables. The selected study designs included observational cross-sectional, longitudinal, and intervention studies (baseline data only). We calculated pooled means or mean differences with 95% confidence intervals (CIs) and employed a random-effects meta-analysis with robust variance estimation. We assessed heterogeneity using Cochrane Q and 95% prediction intervals. Results Our literature search retrieved 643 records, with 24 articles meeting our inclusion criteria. Most available information focused on international male wheelchair tennis players in the open division, primarily competing in singles on hard courts. Key findings (mean [95% CI]) for these players on hard courts were match duration 65.9 min [55.0–78.8], set duration 35.0 min [28.2–43.5], game duration 4.6 min [0.92–23.3], rally duration 6.1 s [3.7–10.2], effective playing time 19.8% [18.9–20.7], and work-to-rest ratio 1:4.1 [1:3.7–1:4.4]. Insufficient data were available to analyse play duration for female players. However, for the available data on hard court matches, the average set duration was 34.8 min [32.5–37.2]. International male players on hard court covered an average distance per match of 3859 m [1917–7768], with mean and peak average forward speeds of 1.06 m/s [0.85–1.32] and 3.55 m/s [2.92–4.31], respectively. These players executed an average of 365.9 [317.2–422.1] strokes per match, 200.6 [134.7–299.0] per set, 25.4 [16.7–38.7] per game, and 3.4 [2.6–4.6] per rally. Insufficient data were available for a meta-analysis of female players’ on-court movement and stroke performance. The average and peak heart rates of international male players on hard court were 134.3 [124.2–145.1] and 166.0 [132.7–207.6] beats per minute, and the average match heart rate expressed as a percentage of peak heart rate was 74.7% [46.4–100]. We found no studies concerning regional players or juniors, and only one study on doubles match play. Conclusions While we present a comprehensive overview of the physical demands of wheelchair tennis, our understanding predominantly centres around international male players competing on hard courts in the open division. To attain a more comprehensive insight into the sport’s physical requirements, future research should prioritise the inclusion of data on female and quad players, juniors, doubles, and matches played on clay and grass court surfaces. Such endeavours will facilitate the development of more tailored and effective training programmes for wheelchair tennis players and coaches.
An important performance determinant in wheelchair sports is the power exchanged between the athletewheelchair combination and the environment, in short, mechanical power. Inertial measurement units (IMUs) might be used to estimate the exchanged mechanical power during wheelchair sports practice. However, to validly apply IMUs for mechanical power assessment in wheelchair sports, a well-founded and unambiguous theoretical framework is required that follows the dynamics of manual wheelchair propulsion. Therefore, this research has two goals. First, to present a theoretical framework that supports the use of IMUs to estimate power output via power balance equations. Second, to demonstrate the use of the IMU-based power estimates during wheelchair propulsion based on experimental data. Mechanical power during straight-line wheelchair propulsion on a treadmill was estimated using a wheel mounted IMU and was subsequently compared to optical motion capture data serving as a reference. IMU-based power was calculated from rolling resistance (estimated from drag tests) and change in kinetic energy (estimated using wheelchair velocity and wheelchair acceleration). The results reveal no significant difference between reference power values and the proposed IMU-based power (1.8% mean difference, N.S.). As the estimated rolling resistance shows a 0.9–1.7% underestimation, over time, IMU-based power will be slightly underestimated as well. To conclude, the theoretical framework and the resulting IMU model seems to provide acceptable estimates of mechanical power during straight-line wheelchair propulsion in wheelchair (sports) practice, and it is an important first step towards feasible power estimations in all wheelchair sports situations.