Service of SURF
© 2025 SURF
In de binnenstad van Amsterdam wordt door infrastructuurproblematiek en het drukke verkeer de problematiek van bedrijfsafvalinzameling nog meer uitvergroot, naast dat de gemeente uitgesproken ambities heeft voor emissievrije stadslogistiek en de ontwikkeling van de circulaire economie. Daarom onderzoekt de gemeente met partners die actief zijn in afvalinzameling hoe gescheiden afvalstromen collectiever, kleinschaliger en frequenter ingezameld kunnen worden en met behulp van emissievrije, elektrisch aangedreven en lichtgewicht logistieke oplossingen wordt onderzocht. Één van de pilots betreft bedrijfsafvalinzameling over water in het wallengebied en is gerealiseerd door gemeente Amsterdam afdeling bedrijfsafval, afvalverwerker Renewi, logistiek bedrijf ZOEV City en sociaal leer-en werkbedrijf Pantar. Het restafval van een aantal bedrijven wordt door kleine elektrische voertuigen lokaal ingezameld en met een stuwboot naar de verwerker gebracht in plaats van inzameling door de gebruikelijke dieselvuilniswagen.In dit project onderzochten we hoe we een gezamenlijk ontwikkeld businessmodel voor deze nieuwe wijze van inzamelen in de case rendabel kan zijn voor de stakeholders. En we onderzochte hoe het bij kan dragen aan emissievrije logistiek, minder verkeersdruk, leefbaarheid in de omgeving, minder onderhoud aan de kademuren en een verbeterde afvalscheiding voor hergebruik in de circulaire economie. Het rapport laat zien hoe open collaborative business modelling, gecombineerd met impactmetingen kan helpen bij het ontwikkelen van oplossingrichtingen voor nieuwe circulaire samenwerkingsverbanden.
Over the past 20 years, water quality in Indonesia has deteriorated due to an increase of water pollution. Research and analysis is needed to identify pollution sources and assess contamination in Indonesian water resources. Water quality management is not yet sufficiently integrated in river basin management in Indonesia, which mainly focuses on water quantity. Women are comparatively highly impacted by failing water resources management, but theirinvolvement in decision making processes is limited. Water quality deterioration continues to increase socio-economic inequality, as it are the most poor communities who live on and along the river. The uneven water quality related disease burden in Brantas River Basin widens the socio-economic gap between societal groups. In the Brantas region, cooperation and intention between stakeholders to tackle these issues is growing, but is fragile as well due to overlapping institutional mandates, poor status of water quality monitoring networks, and limited commitment of industries to treat their waste water streams. The existing group of Indonesian change makers will be supported by this project. Three Indonesian and three Dutch organisations have teamed up to support negotiation platforms in order to deal with institutional challenges, to increase water quality monitoring capacity, to build an enabling environment facilitating sustainable industrial change, and to develop an enabling environment in support of community concerns and civil society initiatives. The project builds on integrated water quality monitoring and modelling within a framework of social learning. The strong consortium will be able to build links with civil society groups (including women, farmer and fisher unions) in close cooperation with local, regional and national Indonesian governmentinstitutions to clean the Brantas river and secure income and health for East Java’s population, in particular the most vulnerable groups.
This research contributes to understanding and shaping systems for OFMSW separation at urban Small and Medium Enterprises (SMEs, such as offices, shops and service providers). Separating SMEs’ organic fraction of municipal solid waste (OFMSW) is both an opportunity and a serious challenge for the transition towards circular cities. It is an opportunity because OFMSW represents approximately 40% of the total waste mass generated by these companies. It is challenging because post-collection separation is not feasible for OFMSW. Therefore, SMEs disposing of waste should separate their solid waste so that processing the organic fraction for reuse and recycling is practical and attainable. However, these companies do not experience direct advantages from the extra efforts in separating waste, and much of the OFMSW ends up in landfills, often resulting in unnecessary GHG emissions. Therefore, governments and waste processors are looking for ways to improve the OFMSW separation degree by urban companies disposing of waste through policies for behaviour change.There are multiple types of personnel at companies disposing of waste. These co-workers act according to their values, beliefs and norms. They adapt their behaviour continuously, influenced by the physical environment, events over time and self-evaluation of their actions. Therefore, waste separation at companies can be regarded as a Socio-Technical Complex Adaptive System (STCAS). Agent-based modelling and simulation are powerful methods to help understand STCAS. Consequently, we have created an agent-based model representing the evolution of behaviour regarding waste separation at companies in the urban environment. The model aims to show public and private stakeholders involved in solid waste collection, transport and processing to what extent behaviour change policies can shape the system towards desired waste separation degrees.We have co-created the model with participants utilising literature and empirical data from a case study on the transition of the waste collection system of a business park located at a former harbour area in Amsterdam, The Netherlands. First, a conceptual model of the system and the environment was set up through participatory workshops, surveys and interviews with stakeholders, domain experts and relevant actors. Together with our case participants, five policies that affect waste separation behaviour were included in the model. To model the behaviour of each company worker’s values, beliefs and norms during the separation and disposal of OFMSW, we have used the Value-Belief-Norm (VBN) Theory by Stern et al. (1999). We have collected data on waste collection behaviour and separation rates through interviews, workshops and a literature study to operationalise and validate the model.Simulation results show how combinations of behaviour profiles affect waste separation rates. Furthermore, findings show that single waste separation policies are often limitedly capable of changing the behaviour in the system. Rather, a combination of information and communication policies is needed to improve the separation of OFMSW, i.e., dissemination of a newsletter, providing personal feedback to the co-workers disposing of waste, and sharing information on the (improvement of) recycling rates.This study contributes to a better understanding of how policies can support co-workers’ pro-environmental behaviour for organic waste separation rates at SMEs. Thus, it shows policymakers how to stimulate the circular transition by actively engaging co-workers’ waste separation behaviour at SMEs. Future work will extend the model’s purpose by including households and policies supporting separating multiple waste types aimed at various R-strategies proposed by Potting et al. (2016).
MULTIFILE
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.
In the Netherlands, the theme of transitioning to circular food systems is high on the national agenda. The PBL Netherlands Environmental Assessment Agency has stressed that commuting to circular food chains requires a radical transformation of the food chain where (a) natural resources must be effectively used and managed (soil, water, biodiversity, minerals), (b) there must be an optimum use of food by reducing (food) waste . . ., (c) less environmental pressure, and (d) an optimum use of residue streams. The PBL also recognizes that there should be room for tailored solutions and that it is important to establish a benchmark, to be aware of impacts in the production chain and the added value of products. In the line of circular food systems, an integrated nature-inclusive circular farming approach is needed in order to develop a feasible resource-efficient and sustainable business models that brings shared value into the food chain while invigorating the rural areas including those where agricultural vacancy is occurring. Agroforestry is an example of an integrated nature-inclusive circular farming. It is a multifunctional system that diversifies and adapts the production while reducing the carbon footprint and minimizing the management efforts and input costs; where trees, crops and/or livestock open business opportunities in the food value chains as well as in the waste stream chains. To exploit the opportunities that agroforestry as an integrated resource-efficient farming system adds to the advancement towards (a) valuable circular short food chains, (b) nature-based entrepreneurship (nature-inclusive agriculture), and (c) and additionally, the re-use of abandoned agricultural spaces in the Overijssel province, this project mobilizes the private sector, provincial decision makers, financers and knowledge institutes into developing insights over the feasible implementation of agroforestry systems that can bring economic profit while enhancing and maintaining ecosystem services.
Mattresses for the healthcare sector are designed for robust use with a core foam layer and a polyurethane-coated polyester textile cover. Nurses and surgeons indicate that these mattresses are highly uncomfortable to patients because of poor microclimatic management (air, moisture, temperature, friction, pressure regulation, etc) across the mattress, which can cause pressure ulcers (in less than a day). The problem is severe (e.g., extra recovery time, medication, increased risk, and costs) for patients with wounds, infection, pressure-sensitive decubitus. There are around 180,000 waterproof mattresses in the healthcare sector in the Netherlands, of which yearly 40,000 mattresses are discarded. Owing to the rapidly aging population it is expected to increase the demand for these functional mattresses from 180,000 to 400,000 in the next 10 years in the healthcare sector. To achieve a circular economy, Dutch Government aims for a 50% reduction in the use of primary raw materials by 2030. As of January 1, 2022, mattress manufacturers and importers are obliged to pay a waste management contribution. Within the scope of this project, we will design, develop, and test a circular & functional mattress for the healthcare (cure & care) sector. The team of experts from knowledge institutes, SMEs, hospital(s), branch-organization joins hands to design and develop a functional (microclimate management, including ease of use for nurses and patients) mattress that deals with uncomfortable sleeping and addresses the issue of pressure ulcers thereby overall accelerating the healing process. Such development addresses the core issue of circularity. The systematic research with proper demand articulation leads to V-shape verification and validation research methodology. With design focus and applied R&D at TRL-level (4-6) is expected to deliver the validated prototype(s) offering SMEs an opportunity to innovate and expand their market. The knowledge will be used for dissemination and education at Saxion.