Service of SURF
© 2025 SURF
Martien Visser neemt het Net-Zero scenario van het IEA onder de loep. “Het geeft een goede indruk van de uitdagingen die we voor ons hebben. Hoe gaan wie die waarmaken of zelfs overtreffen?”
LINK
Analysis of charging behavior of different type of users within the Amsterdam area. A definition of different type of users is deemed neccesary to forecast charging behaviour.---Analyse van laadgedrag van verschillende type gebruikers van de laadinfrastructuur in Amsterdam. Definitie van type gebruikers is nodig om voorspellingen over het verbruik te kunnen doen (EN).
In het RAAK-project, genaamd Groningen MAPS, is er veel data en kennis vergaard van waaruit antwoorden zijn geformuleerd op verschillende vragen rondom belasting en belastbaarheid van (top)sporters. Het onderzoek naar de factoren die invloed hebben op de prestaties en het blessurerisico van sporters heeft opgeleverd dat we nu meer inzicht hebben in de informatie die nodig is om gericht te zoeken naar verbanden tussen belasting en belastbaarheid. We hebben echter nog niet gekeken naar de data vanuit een datamining perspectief. Datamining is het gericht zoeken naar verbanden in een database met als doel het opstellen van profielen. Deze profielen kunnen nieuwe inzichten geven waardoor sporters van nog betere feedback voorzien kunnen worden. Het doel van het Top-up project is om kennis te ontwikkelen over het automatiseren van de verwerking en analyse van datastromen. Dit zal leiden tot een datasysteem wat automatisch analyses uitvoert achter de schermen. Met dit datasysteem kan de Groningen MAPS-data verder geanalyseerd worden (door middel van datamining) om nieuw inzicht te verkrijgen op het gebied van patronen in belasting en belastbaarheid van (top)sporters.
Zijn data-analyse en bio-informatica de sleutel naar voorspellingen over de invloed van giftige stoffen op de gezondheid van mensen? Het project DART Pathfinder is een vervolgonderzoek naar een dierproefvrije testmethode. Met moderne ICT-technieken proberen we die voorspellingen te doen.Doel Het doel van dit project is om gegevens over giftige stoffen uit verschillende data bronnen samen te brengen. In het onderzoek gebruiken we technieken uit de bio-informatica. Zo willen we de eigenschappen van giftige stoffen beter in kaart brengen en (nadelige) effecten van soortgelijke stoffen kunnen voorspellen. Veel bedrijven maken producten of stoffen, die getest moeten worden of ze veilig zijn. Met dit project helpen we bedrijven om o.b.v. bestaande gegevens een betere keuze te maken welke testen ze hiervoor het beste kunnen gebruiken. Resultaten Kennis over computer modellen die voorspellingen doen, zoals machine learning, regression tree-based models; Nieuwe algoritmen (instructies om berekeningen uit te voeren) Inzicht in nieuwe biologische mechanismen obv data science Nieuwe statische methoden om data te analysen en voorspellingen te doen. Looptijd 01 februari 2018 - 01 februari 2022 Aanpak Met de gegevens uit het onderzoek maken we een computermodel dat voorspelt of giftige stoffen invloed hebben op de voortplanting en ontwikkeling van mensen. Die voorspelling gebeurt via machine learning, algoritmen en statistische methoden. Voor dit model wordt informatie uit publieke databases over fysische en chemische eigenschappen van mogelijk gevaarlijke stoffen samengevoegd met de gegevens over de invloed van deze stoffen op levende organismen. Net als in het eerste onderzoek (PreDART) werken we met rondwormen (C.elegans) en embryo's van zebravissen, met als doel geen proeven meer met ratten en konijnen te hoeven doen.
Zijn data-analyse en bio-informatica de sleutel naar voorspellingen over de invloed van giftige stoffen op de gezondheid van mensen? Het project DART Pathfinder is een vervolgonderzoek naar een dierproefvrije testmethode. Met moderne ICT-technieken proberen we die voorspellingen te doen.