Service of SURF
© 2025 SURF
In this paper we analyse the way students tag recorded lectures. We compare their tagging strategy and the tags that they create with tagging done by an expert. We look at the quality of the tags students add, and we introduce a method of measuring how similar the tags are, using vector space modelling and cosine similarity. We show that the quality of tagging by students is high enough to be useful. We also show that there is no generic vocabulary gap between the expert and the students. Our study shows no statistically significant correlation between the tag similarity and the indicated interest in the course, the perceived importance of the course, the number of lectures attended, the indicated difficulty of the course, the number of recorded lectures viewed, the indicated ease of finding the needed parts of a recorded lecture, or the number of tags used by the student.
LINK
Het doel van dit onderzoek is te onderzoeken onder welke omstandigheden en onder welke condities relatief moderne modelleringstechnieken zoals support vector machines, neural networks en random forests voordelen zouden kunnen hebben in medisch-wetenschappelijk onderzoek en in de medische praktijk in vergelijking met meer traditionele modelleringstechnieken, zoals lineaire regressie, logistische regressie en Cox regressie.
MULTIFILE
BackgroundScientific software incorporates models that capture fundamental domain knowledge. This software is becoming increasingly more relevant as an instrument for food research. However, scientific software is currently hardly shared among and (re-)used by stakeholders in the food domain, which hampers effective dissemination of knowledge, i.e. knowledge transfer.Scope and approachThis paper reviews selected approaches, best practices, hurdles and limitations regarding knowledge transfer via software and the mathematical models embedded in it to provide points of reference for the food community.Key findings and conclusionsThe paper focusses on three aspects. Firstly, the publication of digital objects on the web, which offers valorisation software as a scientific asset. Secondly, building transferrable software as way to share knowledge through collaboration with experts and stakeholders. Thirdly, developing food engineers' modelling skills through the use of food models and software in education and training.