Service of SURF
© 2025 SURF
BACKGROUND: Non-use of and dissatisfaction with ankle foot orthoses (AFOs) occurs frequently. The objective of this study is to gain insight in the conversation during the intake and examination phase, from the clients’ perspective, at two levels: 1) the attention for the activities and the context in which these activities take place, and 2) the quality of the conversation. METHODOLOGY: Semi-structured interviews were performed with 12 AFO users within a two-week period following intake and examination. In these interviews, and subsequent data analysis, extra attention was paid to the needs and wishes of the user, the desired activities and the environments in which these activities take place. RESULTS AND CONCLUSION: Activities and environments were seldom inquired about or discussed during the intake and examination phase. Also, activities were not placed in the context of their specific environment. As a result, profundity lacks. Consequently, orthotists based their designs on a ‘reduced reality’ because important and valuable contextual information that might benefit prescription and design of assistive devices was missed. A model is presented for mapping user activities and user environments in a systematic way. The term ‘user practices’ is introduced to emphasise the concept of activities within a specific environment.
LINK
This poster sketches the outlines of a theoretical research framework to assess whether and on what grounds certain behavioral effects may be attributed to particular game mechanics and game play aspects. It is founded on the Elaboration Likelihood Model of Persuasion (ELM), which is quite appropriate to guide the evaluation structure for interventions that either aim at short term or long term attitude and behavior change.
In discussions on smart grids, it is often stated that residential end-users will play a more active role in the management of the electric power system. Experience in practice on how to empower end-users for such a role is however limited. This paper presents a field study in the first phase of the PowerMatching City project in which twenty-two households were equipped with demand-response-enabled heating systems and white goods. Although end-users were satisfied with the degree of living comfort afforded by the smart energy system, the user interface did not provide sufficient control and energy feedback to support an active contribution to the balancing of supply and demand. The full potential of demand response was thus not realized. The second phase of the project builds on these findings by design, implementation and evaluation of an improved user interface in combination with two demand response propositions. © 2013 IEEE.
Aanleiding Nieuwsuitgeverijen bevinden zich in zwaar weer. Economische malaise en toegenomen concurrentie in het pluriforme medialandschap dwingen uitgeverijen om enerzijds kosten te besparen en tegelijkertijd te investeren in innovatie. De verdere automatisering van de nieuwsredactie vormt hierbij een uitdaging. Buiten de branche ontstaan technieken die uitgeverijen hierbij zouden kunnen gebruiken. Deze zijn nog niet 'vertaald' naar gebruiksvriendelijke systemen voor redactieprocessen. De deelnemers aan het project formuleren voor dit braakliggend terrein een praktijkgericht onderzoek. Doelstelling Dit onderzoek wil antwoord geven op de vraag: Hoe kunnen bewezen en nieuw te ontwikkelen technieken uit het domein van 'natural language processing' een bijdrage leveren aan de automatisering van een nieuwsredactie en het journalistieke product? 'Natural language processing' - het automatisch genereren van taal - is het onderwerp van het onderzoek. In het werkveld staat deze ontwikkeling bekend als 'automated journalism' of 'robotjournalistiek'. Het onderzoek richt zich enerzijds op ontwikkeling van algoritmes ('robots') en anderzijds op de impact van deze technologische ontwikkelingen op het nieuwsveld. De impact wordt onderzocht uit zowel het perspectief van de journalist als de nieuwsconsument. De projectdeelnemers ontwikkelen binnen dit onderzoek twee prototypes die samen het automated-journalismsysteem vormen. Dit systeem gaat tijdens en na het project gebruikt worden door onderzoekers, journalisten, docenten en studenten. Beoogde resultaten Het concrete resultaat van het project is een prototype van een geautomatiseerd redactiesysteem. Verder levert het project inzicht op in de verankering van dit soort systemen binnen een nieuwsredactie. Het onderzoek biedt een nieuw perspectief op de manier waarop de nieuwsconsument de ontwikkeling van 'automated journalism' in Nederland waardeert. Het projectteam deelt de onderzoekresultaten door middel van presentaties voor de uitgeverijbranche, presentaties op wetenschappelijke conferenties, publicaties in (vak)tijdschriften, reflectiebijeenkomsten met collega-opleidingen en een samenvattende white paper.
The projectThe overarching goal of DIGNITY, DIGital traNsport In and for socieTY, is to foster a sustainable, integrated and user-friendly digital travel eco-system that improves accessibility and social inclusion, along with the travel experience and daily life of all citizens. The project delves into the digital transport eco-system to grasp the full range of factors that might lead to disparities in the uptake of digitalised mobility solutions by different user groups in Europe. Analysing the digital transition from both a user and provider’s perspective, DIGNITY looks at the challenges brought about by digitalisation, to then design, test and validate the DIGNITY approach, a novel concept that seeks to become the ‘ABCs for a digital inclusive travel system’. The approach combines proven inclusive design methodologies with the principles of foresight analysis to examine how a structured involvement of all actors – local institutions, market players, interest groups and end users – can help bridge the digital gap by co-creating more inclusive mobility solutions and by formulating user-centred policy frameworks.The objectivesThe idea is to support public and private mobility providers in conceiving mainstream digital products or services that are accessible to and usable by as many people as possible, regardless of their income, social situation or age; and to help policy makers formulate long-term strategies that promote innovation in transport while responding to global social, demographic and economic changes, including the challenges of poverty and migration.The missionBy focusing on and involving end-users throughout the process of designing policies, products, or services, it is possible to reduce social exclusion while boosting new business models and social innovation. The end result that DIGNITY is aiming for is an innovative decision support tool that can help local and regional decision-makers formulate digitally inclusive policies and strategies, and digital providers design more inclusive products and services.The approachThe DIGNITY approach combines analysis with concrete actions to make digital mobility services inclusive over the long term. The approach connects users’ needs and requirements with the provision of mobility services, and at the same time connects those services to the institutional framework. It is a multi-phase process that first seeks to understand and bridge the digital gap, and then to test, evaluate and fine-tune the approach, so that it can be applied in other contexts even after the project’s end.Partners: ISINNOVA (Italy), Mobiel 21 (Belgium), Universitat Politechnica deCatalunya Spain), IZT (Germany), University of Cambridge (UK), Factualconsulting (Spain), Barcelona Regional Agencia (Spain), City of Tilburg(Netherlands), Nextbike (Germany), City of Ancona (Italy), MyCicero (Italy),Conerobus (Italy), Vlaams Gewest (Belgium)
Over the past decade, the trend in both the public sector and industry has been to outsource ICT to the cloud. While cost savings are often used as a rationale for outsourcing, another argument that is frequently used is that the cloud improves security. The reasoning behind this is twofold. First, cloud service providers are typically thought to have skilled staff trained in good security practices. Second, cloud providers often have a vastly distributed, highly connected network infrastructure, making them more resilient in the face of outages and denial-of-service attacks. Yet many examples of cloud outages, often due to attacks, call into question whether outsourcing to the cloud does improve security. In this project our goal therefore is to answer two questions: 1) did the cloud make use more secure?and 2) can we provide specific security guidance to support cloud outsourcing strategies? We will approach these questions in a multi-disciplinary fashion from a technical angle and from a business and management perspective. On the technical side, the project will focus on providing comprehensive insight into the attack surface at the network level of cloud providers and their users. We will use a measurement-based approach, leveraging large scale datasets about the Internet, both our own data (e.g. OpenINTEL, a large- scale dataset of active DNS measurements) and datasets from our long-term collaborators, such as CAIDA in the US (BGPStream, Network Telescope) and Saarland University in Germany (AmpPot). We will use this data to study the network infrastructure outside and within cloud environments to structurally map vulnerabilities to attacks as well as to identify security anti-patterns, where the way cloud services are managed or used introduce a weak point that attackers can target. From a business point of view, we will investigate outsourcing strategies for both the cloud providers and their customers. For guaranteeing 100% availability, cloud service providers have to maintain additional capacity at all times. They also need to forecast capacity requirements continuously for financially profitable decisions. If the forecast is lower than the capacity needed, then the cloud is not able to deliver 100% availability in case of an attack. Conversely, if the forecast is substantially higher, the cloud service provider might not be able to make desired profits. We therefore propose to assess the risk profiles of cloud providers (how likely it is a cloud provider is under attack at a given time given the nature of its customers) using available attack data to improve the provider resilience to future attacks. From the costumer perspective, we will investigate how we can support cloud outsourcing by taking into consideration business and technical constraints. Decision to choose a cloud service provider is typically based on multiple criteria depending upon the company’s needs (security and operational). We will develop decision support systems that will help in mapping companies’ needs to cloud service providers’ offers.