Urban delta areas are facing problems related with land scarcity and are impacted by climate change and flooding. To meet the current demands and future challenges, innovative and adaptive urban developments are necessary [de Graaf, 2009]. Floating urban development is a promising solutions, as it offers the flexibility and multifunctionality required to efficiently face the current challenges for delta cities. It provides flood proof buildings and opportunities for sustainable food and energy production
LINK
Urban delta areas are facing problems related with land scarcity and are impacted by climate change and flooding. To meet the current demands and future challenges, innovative and adaptive urban developments are necessary [de Graaf, 2009]. Floating urban development is a promising solutions, as it offers the flexibility and multifunctionality required to efficiently face the current challenges for delta cities. It provides flood proof buildings and opportunities for sustainable food and energy production
LINK
Climate change and urbanization will increase the frequency and magnitude of urban flooding and water quality problems in many regions of the world. In coastal and delta areas like The Netherlands and the Philippines, where urbanization is often high, there has been an increase in the adoption of sustainable urban drainage systems (SUDS). SUDS are installed around the world with the expectation to reduce urban flooding and reduce the pollution impact on receiving waters. Most cities in Asia are starting to implement SUDS as their strategy to make their cities sustainable and resilient.The combination of SUDS with appropriate wastewater treatment and management systems have the potential to be multifunctional in alleviating flood run-off, improving water quality, alleviating heat stress and as a source for reusing the stormwater and wastewater.Since the earliest SUDS are implemented in Europe decades ago it is advised to use the lessons learnt in this process. International knowledge exchange is promoted in projects as IWASTO where several organisations from the Philippines and The Netherlands join forces on a specific region as the Pateros riverin Manila with the aim to minimise the pollution impact on this receiving water. The first findings of this project related to storm water and wastewater management are presented in this paper. In this stage of the project high level support models that map the challenges in the city (such as flooding and heatstress) arevaluable tools for implementing cost effective sustainable drainage for improving water quality.
Worldwide, coral reefs are rapidly declining due to increased sea water temperatures and other environmental stresses (Figure 1). To counter the extinction of major coral reef building species on the island of Bonaire, the non-profit organization Reef Renewal Foundation Bonaire is restoring degraded reef sites using corals that are grown in local nurseries. In these nurseries, corals are propagated on artificial trees using fragmentation. After 6-8 months of growth in the nursery, the corals are transplanted to degraded reef sites around the island. Over the years more than 21.000 corals have been outplanted to reef restoration sites in this way. These corals show high survivorship under natural reef conditions but remain under threat by environmental disturbances, such as increased water temperatures, diseases, and competition with macroalgae. A promising intervention to increase reef persistence and resilience is to manipulate the coral-associated microbiome. At present, the composition of the microbiome in nursery-reared and outplanted corals on Bonaire is unknown. The aim of the current project is to identify and isolate naturally occurring beneficial bacteria that may stimulate the resilience of these corals. Our key objectives are: 1) to assess the presence of functionally beneficial bacteria in corals in nursery and restoration sites on Bonaire using metagenomic screening. 2) to design culture strategies to isolate these functionally beneficial bacteria. In the future, a selection of these beneficial bacteria can be applied to the corals to increase their resilience against environmental disturbances.
Dit voorstel betreft een onderzoek naar de toepassingsmogelijkheden van een nieuw biocomposiet in het circulaire bouwproces. Met behulp van innovatieve digitale ontwerp- en productietechnieken wordt onderzocht hoe en waar het biocomposiet, zowel functioneel als esthetisch, hoogwaardig toegepast kan worden in de bouw, met het circulaire paviljoen ‘Waterfront’ als testcase. Het onderzoek wordt uitgevoerd door het onderzoeksprogramma Urban Technology van de Hogeschool van Amsterdam, Studio Samira Boon en NEXT architects. De rijksoverheid heeft als doelstelling dat niet alleen alle nieuwbouwwoningen per 2020 energieneutraal gebouwd moeten worden, maar ook dat per 2050 alle bouw in Nederland circulair moet zijn. In de “Transitieagenda circulaire bouweconomie 2018” is de strategie hiervoor opgesteld. Het bouwproject ‘Paviljoen Waterfront’ is een test op basis van de ambities die de rijksoverheid heeft voor Nederland in 2023: energie neutraal EN circulair. Het door de HvA ontwikkelde circulaire biocomposiet lijkt een uitermate geschikt materiaal voor architectonische toepassingen binnen de circulaire bouw. Het is echter een halffabrikaat, zacht als vilt op rol (plaat), en door de unieke eigenschappen ook met digitale nabewerkingstechieken te bewerken. Origamitechnieken kunnen middels patronen van zachte buiglijnen en harde vlakken belangrijke eigenschappen, o.a. draagkracht, flexibiliteit en akoestiek, toevoegen aan een vlak materiaal. Daarom lijkt een combinatie van dit biocomposiet, origami techniek en digitale productie een ultieme combinatie. Studio Samira Boon heeft jarenlange ervaring in het gebruik van origamitechnieken voor textiele 3D constructie en heeft de vraag of deze techniek ook op circulair biocomposiet kan worden toegepast. Next Architects ziet een kans om vernieuwende circulaire bouwconcepten met biocomposiet te ontwerpen, als dit materiaal eenvoudig en flexibel kan worden toegepast. Door dit onderzoek beogen betrokken partijen kennis te verwerven zodat dit materiaal kan worden verwerkt tot visueel aantrekkelijke 3D producten ten behoeve van klimaatbeheersing, akoestiek en flexibel ruimtegebruik in de circulaire bouweconomie.
Restoring rivers with an integrated approach that combines water safety, nature development and gravel mining remains a challenge. Also for the Grensmaas, the most southern trajectory of the Dutch main river Maas, that crosses the border with Belgium in the south of Limburg. The first plans (“Plan Ooievaar”) were already developed in the 1980s and were highly innovative and controversial, as they were based on the idea of using nature-based solutions combined with social-economic development. Severe floodings in 1993 and 1995 came as a shock and accelerated the process to implement the associated measures. To address the multifunctionality of the river, the Grensmaas consortium was set up by public and private parties (the largest public-private partnership ever formed in the Netherlands) to have an effective, scalable and socially accepted project. However, despite the shared long term vision and the further development of plans during the process it was hard to satisfy all the goals in the long run. While stakeholders agreed on the long-term goal, the path towards that goal remains disputed and depends on the perceived status quo and urgency of the problem. Moreover, internal and external pressures and disturbances like climate change or the economic crisis influenced perception and economic conditions of stakeholders differently. In this research we will identify relevant system-processes connected to the implementation of nature-based solutions through the lens of social-ecological resilience. This knowledge will be used to co-create management plans that effectively improve the long-term resilience of the Dutch main water systems.