Service of SURF
© 2025 SURF
The concept of the Daily Urban System (DUS) has gained relevance over the past decades as the entity to examine and explain the functionality of the urban landscape. Daily Urban Systems are usually defined and measured by the strength of commuter or shopper flows between the nodes of the system. It is important to realize that these Daily Urban Systems are the accumulated pattern of individuals making frequent, recurring trips to other localities than their own. Understanding the microeconomic decisions behind these spatial interactions will help in assessing the functional and spatial structure of DUS. In this paper is explored how, based on Dutch empirical data, the individual household’s spatial interactions shape the daily urban system and how the destination of these interactions correlates with personal and spatial variables and motives for interaction. The results show that the occurrence of non-local spatial interactions can be explained by the size-based Christallerian hierarchy of the localities of residence, but that it is the regional population – or market potential – that explains and moderates the sorting of households and the intensity and direction of their spatial interactions in the DUS, matching agglomeration theory.
Introduction: There are good reasons to study urban innovation from a systemic perspective. A key finding in innovation research is that organizations rarely innovate in isolation, but in interaction with clients, competitors, suppliers, and other organizations. A system perspective is useful in understanding and analyzing these interactions. Cities and urban regions are increasingly recognized as key milieus in which these interactions occur. The urban innovation system approach conceptualizes the city or urban region as a context in which innovations emerge from complex interactions between urban actors—firms, citizens, governments, knowledge institutes— in a particular institutional setting. The systemic view of innovation departs from traditional linear models that depict innovation as a staged process that starts with (basic) scientific research and ends with commercialization by companies. Innovation processes are much more complex and diverse, influenced by multiple actors that interact in networks with feedback loops, and involving many types of knowledge beyond scientific knowledge. Urban innovation systems are nested in innovation systems on other spatial levels—regional, national, international. Studies on urban innovation systems seek to explain how innovations emerge in an urban context, why urban regions differ in their innovative performance, and also address questions on the governance and management of such systems. Studies in this field draw from a variety of disciplines including economic geography, urban and regional economics, political sciences, innovation studies, social sciences, and urban planning.
MULTIFILE
Why are some regions and cities so good at attracting talented people, creating high-level knowledge, and producing exciting new ideas and innovations? What are the ingredients of success? Can innovative cities be created and stimulated, or do they just flourish by mere chance? This book analyses the development and management of innovation systems in cities, in order to provide a better understanding of what makes such systems perform. The book opens by developing a conceptual model that combines insights from urban economics with economic geography, urban governance and place marketing. This highlights the relevance of path dependence, different types of proximity (and the role of clusters, networks and platforms), institutional conditions, place attractiveness and place identity in the evolution of local innovation systems. The authors then draw on this conceptual framework to structure empirical case studies in three cities with a relatively high innovation performance: Eindhoven (the Netherlands), Stockholm (Sweden) and Suzhou (China). Through these case studies they provide a detailed analysis of how successful innovation systems evolve and what makes them tick.
“Empowering learners to create a sustainable future” This is the mission of Centre of Expertise Mission-Zero at The Hague University of Applied Sciences (THUAS). The postdoc candidate will expand the existing knowledge on biomimicry, which she teaches and researches, as a strategy to fulfil the mission of Mission-Zero. We know when tackling a design challenge, teams have difficulties sifting through the mass of information they encounter. The candidate aims to recognize the value of systematic biomimicry, leading the way towards the ecosystems services we need tomorrow (Pedersen Zari, 2017). Globally, biomimicry demonstrates strategies contributing to solving global challenges such as Urban Heat Islands (UHI) and human interferences, rethinking how climate and circular challenges are approached. Examples like Eastgate building (Pearce, 2016) have demonstrated successes in the field. While biomimicry offers guidelines and methodology, there is insufficient research on complex problem solving that systems-thinking requires. Our research question: Which factors are needed to help (novice) professionals initiate systems-thinking methods as part of their strategy? A solution should enable them to approach challenges in a systems-thinking manner just like nature does, to regenerate and resume projects. Our focus lies with challenges in two industries with many unsustainable practices and where a sizeable impact is possible: the built environment (Circularity Gap, 2021) and fashion (Joung, 2014). Mission Zero has identified a high demand for Biomimicry in these industries. This critical approach: 1) studies existing biomimetic tools, testing and defining gaps; 2) identifies needs of educators and professionals during and after an inter-disciplinary minor at The Hague University; and, 3) translates findings into shareable best practices through publications of results. Findings will be implemented into tangible engaging tools for educational and professional settings. Knowledge will be inclusive and disseminated to large audiences by focusing on communication through social media and intervention conferences.
Restoring rivers with an integrated approach that combines water safety, nature development and gravel mining remains a challenge. Also for the Grensmaas, the most southern trajectory of the Dutch main river Maas, that crosses the border with Belgium in the south of Limburg. The first plans (“Plan Ooievaar”) were already developed in the 1980s and were highly innovative and controversial, as they were based on the idea of using nature-based solutions combined with social-economic development. Severe floodings in 1993 and 1995 came as a shock and accelerated the process to implement the associated measures. To address the multifunctionality of the river, the Grensmaas consortium was set up by public and private parties (the largest public-private partnership ever formed in the Netherlands) to have an effective, scalable and socially accepted project. However, despite the shared long term vision and the further development of plans during the process it was hard to satisfy all the goals in the long run. While stakeholders agreed on the long-term goal, the path towards that goal remains disputed and depends on the perceived status quo and urgency of the problem. Moreover, internal and external pressures and disturbances like climate change or the economic crisis influenced perception and economic conditions of stakeholders differently. In this research we will identify relevant system-processes connected to the implementation of nature-based solutions through the lens of social-ecological resilience. This knowledge will be used to co-create management plans that effectively improve the long-term resilience of the Dutch main water systems.
Over the last couple of years there is a growing interest in the role of the bicycle in Western urban transport systems as an alternative to car use. Cycling not only has positive environmental impacts, but also positive health effects through increased physical activity. From the observation of the Urban Intelligence team that cycling data and information was limited, we have started the development of cycleprint. Cycleprint stands for Cycle Policy Renewal and INnovation by means of tracking Technology with the objective to enable more customer friendly cycle policy.The initial objective of Cycleprint was to translate GPS data into policy relevant insights to enable customer friendly cycle policy. The online toolkit what Cycleprint has become, answers the questions about:-route choice-speeds-delays at intersections -intensities Because of the success of Cycleprint in the Netherlands the range of features is still under development. As a result of the development of Cycleprint the Dutch organized the fietstelweek. In addition to Cycleprint the Urban Intelligence team developed the cyclescan to explore the effects of cycle network enhancement. The project is developed in direct collaboration with the Provincie Noord-Brabant and Metropoolregio Eindhoven to fulfill the ambition to become cycling region of the Netherlands in 2020.