Service of SURF
© 2025 SURF
Cervical dystonia is the most frequent form of focal dystonia. Symptoms often result in pain and functional disability. Local injections of botulinum neurotoxin are currently the treatment of choice for cervical dystonia. Although this treatment has proven effective and is widely applied worldwide, many issues still remain open in the clinical practice. We performed a systematic review of the literature on botulinum toxin treatment for cervical dystonia based on a question-oriented approach, with the aim to provide practical recommendations for the treating clinicians. Key-questions from the clinical practice were explored. Results suggest that while the beneficial effect of botulinum toxin treatment on different aspects of cervical dystonia is well established, robust evidence is still missing concerning some practical aspects, such as doseequivalence between different formulations, optimal treatment intervals, treatment approaches, and the use of supportive techniques including electromyography (EMG) or ultrasounds. Established strategies to prevent or manage common side effects (including excessive muscle weakness, pain at injection site, dysphagia) and potential contraindications to this treatment (pregnancy and lactation, use of anticoagulants, neurological comorbidities) should also be further explored.
During the past decades deinstitutionalisation policies have led to a transition from inpatient towards community mental health care. Many European countries implement Assertive Community Treatment (ACT) as an alternative for inpatient care for “difficult to reach” children and adolescents with severe mental illness. ACT is a well-organized low-threshold treatment modality; patients are actively approached in their own environment, and efforts are undertaken to strengthen the patient’s motivation for treatment. The assumption is that ACT may help to avoid psychiatric hospital admissions, enhance cost-effectiveness, stimulate social participation and support, and reduce stigma. ACT has been extensively investigated in adults with severe mental illness and various reviews support its effectiveness in this patient group. However, to date there is no review available regarding the effectiveness of youth-ACT. It is unknown whether youth-ACT is as effective as it is in adults. This review aims to assess the effects of youth-ACT on severity of psychiatric symptoms, general functioning, and psychiatric hospital admissions.
Alliance has been shown to predict treatment outcome in family-involved treatment for youth problems in several studies.However, meta-analytic research on alliance in family-involved treatment is scarce, and to date, no meta-analytic study on the alliance–outcome association in this field has paid attention to moderating variables. We included 28 studies reporting on the alliance–outcome association in 21 independent study samples of families receiving family-involved treatment for youth problems (N= 2126 families,Mage youth ranging from 10.6 to 16.1). We performed three multilevel meta-analyses of theassociations between three types of alliance processes and treatment outcome, and of several moderator variables. The quality of the alliance was significantly associated with treatment outcome (r= .183,p< .001). Correlations were significantly stronger when alliance scores of different measurement moments were averaged or added, when families were help-seekingrather than receiving mandated care and when studies included younger children. The correlation between alliance improvement and treatment outcome just failed to reached significance (r= .281,p= .067), and no significant correlation was found between split alliances and treatment outcome (r= .106,p= .343). However, the number of included studies reporting onalliance change scores or split alliances was small. Our findings demonstrate that alliance plays a small but significant role in the effectiveness of family-involved treatment. Future research should focus on investigating the more complex systemic aspects of alliance to gain fuller understanding of the dynamic role of alliance in working with families
MULTIFILE
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Point-of-Care devices are broadly viewed as an important contribution to reduce the costs in our healthcare system. Cheap, quick, and reliable testing close to the point of need, can help early detection and thus reduce treatment costs, while improving the quality of life. An important challenge in the realization is the development of the individual cartridges that should be produced in large quantities at low costs. Especially for applications where high sensitivity is required, these cartrgidges will typically have a complex design. In this project we want to develop a manufacturing strategy for large scale production of cartridges based on photonic sensing chips, currently the most sensitive sensors available. A typical sensor cartridge with photonic sensors would comprise the sensor chip, an interface with active components (light source and detectors), the bio-active layer that captures the biomarkers to be detected and a protective package. In addition, there is the choice to integrate the active components in the package (making the interface an electrical one) or placing them in the read-out unit (making the interface an optical one). Finally, testing of the sensor cartridges should also be part of the process. A suitable manufacturing strategy would offer the lowest total-cost-of-ownership (TCO) of the production and use of the cartrdiges. Important in the considereations is that steps can be carried out at the wafer level, at the die level, and at the cartridge level. Because choices for a specific solution will strongly influence the possibilities for other steps, the development of a producitons strategy is far from straightforward. In this project we want to study the possibilities of the individual processes at the three levels mentioned (wafer, die, and cartridge), and in parallel develop a theoretical framework for finding the best strategy in this type of complex production processes.