Service of SURF
© 2025 SURF
The prediction of the running injuries based on selfreported training data on load is difficult. At present, coaches and researchers have no validated system to predict if a runner has an increased risk of injuries. We aim to develop an algorithm to predict the increase of the risk of a runner to sustain an injury. As a first step Self-reported data on training parameters and injuries from high-level runners (duration=37 weeks, n=23, male=16, female=7) were used to identify the most predictive variables for injuries, and train a machine learning tree algorithm to predict an injury. The model was validated by splitting the data in training and a test set. The 10 most important variables were identified from 85 possible variables using the Random Forest algorithm. To predict at an earliest stage, so the runner or the coach is able to intervene, the variables were classified by time to build tree algorithms up to 7 weeks before the occurrence of an injury. By building machine learning algorithms using existing self-reported training data can enable prospective identification of high-level runners who are likely to develop an injury. Only the established prediction model needs to be verified as correct.
Background: Training load is typically described in terms of internal and external load. Investigating the coupling of internal and external training load is relevant to many sports. Here, continuous kernel-density estimation (KDE) may be a valuable tool to capture and visualize this coupling. Aim: Using training load data in speed skating, we evaluated how well bivariate KDE plots describe the coupling of internal and external load and differentiate between specific training sessions, compared to training impulse scores or intensity distribution into training zones. Methods: On-ice training sessions of 18 young (sub)elite speed skaters were monitored for velocity and heart rate during 2 consecutive seasons. Training session types were obtained from the coach’s training scheme, including endurance, interval, tempo, and sprint sessions. Differences in training load between session types were assessed using Kruskal–Wallis or Kolmogorov–Smirnov tests for training impulse and KDE scores, respectively. Results: Training impulse scores were not different between training session types, except for extensive endurance sessions. However, all training session types differed when comparing KDEs for heart rate and velocity (both P < .001). In addition, 2D KDE plots of heart rate and velocity provide detailed insights into the (subtle differences in) coupling of internal and external training load that could not be obtained by 2D plots using training zones. Conclusion: 2D KDE plots provide a valuable tool to visualize and inform coaches on the (subtle differences in) coupling of internal and external training load for training sessions. This will help coaches design better training schemes aiming at desired training adaptations.
This scoping review aimed to systematically explore the breadth and extent of the literature regarding the relationship between contextual factors (CFs) and training load (TL) in adolescent soccer players. Further aims included comprehending potential underlying mechanisms and identifying knowledge gaps. CFs were defined as factors not part of the main training process, such as the coach–athlete relationship and educational responsibilities. PubMed, EBSCO APA PsycINFO, Web of Science, ProQuest Dissertations & Theses A&I, and SportRxiv were searched. Studies involving adolescent soccer players that investigated the CF–TL relationship and measured TL indicators were deemed eligible. Seventeen studies were included, reflecting the limited number of articles published regarding the CF–TL relationship. CFs were mostly related to match-play (N = 13) and phase of the season (N = 7). Moreover, these factors appeared to affect TL. CF related to players’ personal environment (N = 3) were underrepresented in the reviewed studies. Overall, the CF–TL relationship appears to be rarely scrutinized. A likely cause for this lack of research is the segregation of the physiological and psychological research domains, where the CF–TL relationship is often speculated upon but not measured. Therefore, a holistic approach is warranted which also investigates the effect of personal environment, such as stressful life stress events, on TL.