Service of SURF
© 2025 SURF
Hoe richten we de stad koel en hittebestendig in? Stadsontwerpers proberen daar vaak vanachter hun bureau oplossingen voor te bedenken op basis van kaarten, schetsen en berekeningen. Daar kan nu de 'thermal walk' aan worden toegevoegd: zelf al wandelend hitte meten en ervaren.
MULTIFILE
In indoor comfort research, thermal comfort of care-professionals in hospital environment is a little explored topic. To address this gap, a mixed methods study, with the nursing staff in hospital wards acting as participants,was undertaken. Responses were collected during three weeks in the summer (n = 89), and four weeks in the autumn (n = 43). Analysis of the subjective feedback from nurses and the measured indoor thermal conditions revealed that the existent thermal conditions (varying between 20 and 25 °C) caused a slightly warm thermal sensation on the ASHRAE seven point scale. This led to a slightly unacceptable thermal comfort and a slightly obstructed self-appraised work performance. The results also indicated that the optimal thermal sensation for the nurses—suiting their thermal comfort requirements and work performance—would be closer to‘slightly cool’than neutral. Using a design approach of dividing the hospital ward into separate thermal zones, with different set-points for respectively patient and care-professionals’comfort, would seem to be the ideal solution that contributes positively to the work environment and, at the same time, creates avenues for energy conservation.
To understand how transition across different thermal zones in a building impacts the thermal perception of occupants, the current work examines occupant feedback in two work environments — nursing staff in hospital wards and the workers in an office. Both studies used a mix of subjective surveys and objective measurements. A total of 96 responses were collected from the hospital wards while 142 were collected from the office. The thermal environment in the hospital wards was perceived as slightly warm on the ASHRAE thermal sensation scale (mean TSV = 1.2), while the office workers rated their environment on the cool side (mean TSV = 0.15). The results also show that when the transitions were across temperature differences within 2 °C, the thermal perception was not impacted by the magnitude of the temperature difference — as reflected in occupant thermal sensation and thermal comfort/thermal acceptability vote. This would imply that the effect of temperature steps on thermal perception, if any, within these boundaries, was extremely short lived. These findings go towards establishing the feasibility of heterogeneous indoor thermal environments and thermal zoning of workspaces for human comfort.