Service of SURF
© 2025 SURF
BackgroundThe world’s population is aging, and with aging population comes an increase of chronic diseases and multimorbidity. At the same time a shortfall of trained health care professionals is anticipated. This raises questions on how to provide the best possible care. The use of Information and communication technology (ICT) and e-health has the potential to address the challenges that healthcare is facing. ICT applications and e-health, such as videophones, telemedicine and mobile devices, can benefit the healthcare system. Nonetheless, ICT is not used to its full potential. One of the key factors is the low adoption rate by nursing professionals. The nursing profession is characterized by teamwork and interdisciplinary collaboration. Nurses often work in nursing teams and collaboration between different disciplines is necessary for providing health care. Thus, collaboration is necessary when implementing ICT innovations.MethodsA systematic literature review was conducted in online databases PubMEd, CINAHL and IEEE, using key words related to innovation, nursing teams and adoption.ResultsThe result of the systematic review is that little is known about the relation between ICT adoption by nurses and the nature of collaboration by nurses in teams and in interdisciplinary networks. This leads to further research questions and a need for further research in this subject.
from the article: "In the Netherlands, housing corporations are increasingly adopting self-service technologies (SSTs) to support affairs their tenants need to arrange. The purpose of the study is to examine the customers’ motivations of using SSTs in the context of the Dutch public housing sector. An empirical investigation is presented based on a sample of 1,209 tenants. Using partial least squares (PLS), the acceptance model of Blut, Wang, and Schoefer is adopted and tested. The results show that especially the need for interaction negatively influence the adoption of SSTs by tenants. Positively, subjective norm and self-efficacy influence the adoption. Furthermore, playfulness negatively influences this adoption. Developers of SSTs should focus on its ulitalitarian function, rather then invest in its playfulness. Moreover, adoption is propelled by the encouragement of others. This can be enhanced by positive word-of mouth and should therefore stimulated."
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.