Service of SURF
© 2025 SURF
The temporal dimension of acceptance is under-researched in technology acceptance research. Yet, people’s perceptions on technology use may change over time when gaining user experiences. Our 6-month home study deploying an interactive robot provides insight into the long-term use of use interactive technology in a domestic environment. We present a phased framework for the acceptance of interactive technology in domestic environments. Based on 97 interviews obtained from 21 participants living in different household types, the results provide an initial validation of our phased framework for long-term acceptance showing that acceptance phases are linked to certain user experiences which evolve over time when people gain experience with the technology. Involving end users in the early stages of development helps researchers understand the cultural and social contexts of acceptance and enables developers to apply this gained knowledge into their future designs.
Technology in general, and assistive technology in particular, is considered to be a promising opportunity to address the challenges of an aging population. Nevertheless, in health care, technology is not as widely used as could be expected. In this chapter, an overview is given of theories and models that help to understand this phenomenon. First, the design of (assistive) technologies will be addressed and the importance of human-centered design in the development of new assistive devices will be discussed. Also theories and models are addressed about technology acceptance in general. Specific attention will be given to technology acceptance in healthcare professionals, and the implementation of technology within healthcare organizations. The chapter will be based on the state of the art of scientific literature and will be illustrated with examples from our research in daily practice considering the different perspectives of involved stakeholders.
LINK
Craft your own audience: How can a technology-driven company use online gaming communities, like Minecraft, to reach and engage a young audience? This project creates a context in which reality is simulated, by having students work together for a real client in an international context. In this project we explore innovative ways in which Samsung can engage younger audiences through Minecraft, the world's best-selling game with almost 140 million monthly players (2023). This project is focused on on educating, researching and developing playable prototypes within Minecraft that demonstrate how online gaming communities can be used to connect technology companies with a new generation of users. Societal issueInclusion of different ages around technology literacy and education (21st century skills).Benefit to societyGlobal inclusive community around education and R&D, higher cultural awareness.Collaborative partnersManchester Metropolitan University; Samsung Benelux.
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
When dealing with decarbonisation of regional areas, different stakeholders perceive different social, economic, regulatory and technological barriers which they need to overcome in order to move successfully towards a CO2-neutral region. Major questions concern how different technologies for supplying renewable (low carbon) energy can be utilized in an optimal way in combination with (strongly) increased energy efficiency, flexibility in energy demand, planning of investments and minimization of costs and at the same time taking specific local conditions (e.g. capital stock, energy infrastructure) into account. At the same time not only technology and economics are relevant, but just as important is the social acceptance of the transition steps. Together they determine whether or not a theoretical best step forward in the transition will be feasible in real life. On a regional – local scale, there is currently no comprehensive methodology and analysis framework for dealing with the barriers on the level of detail that is required. Decision making for stakeholders to decide on investments and planning over time is therefore difficult. This easily leads to sub-optimal implementation pathways, ineffective use of capital and incentives and too limited emission reductions. No need to say that this will often lead to stalemate situations and progress for energy transition is limited.