Service of SURF
© 2025 SURF
Market competition and global financial uncertainty have been the principal drivers that impel aviation companies to proceed to budget cuts, including decreases in salary and work force levels, in order to ensure viability and sustainability. Under the concepts of Maslow and Herzberg’s motivation theories, the current paper unfolds the influence of employment cost fluctuations on an aviation organization’s accidents attributed to human error. This study exploited financial and accident data over a period of 13 years, and explored if rates of accidents attributed to human errors of flight, maintenance and ramp crews, correlate with the average employment expenditures (N=13). In addition, the study took into account the relationship between average task load (ratio of flying hours per employee) and accident rates related to human error since task load, as part of total workload, is a constraint of modern complex systems. The results revealed strong correlations amongst accident rates linked to human error with the average employment costs and task load. The use of more specific data per aviation organizational department and professional group may further validate the results of this study. Organizations that seek to explore the 2 association between human error and employment budget and task load might appropriately adapt the approach proposed.
Collaborative learning tasks may represent an effective way to stimulate higher-order processes among high-ability students in regular classrooms. This study investigatedthe effects of task structure and group composition on the elaboration and metacognitive activities of 11th grade preuniversity students during a collaborative learning task: 102 students worked in small groups. On an ill-structured or moderately structured task. Differential effects forcognitive ability were investigated using a continuous measure. Likewise, the effects of group composition were examined using a continuous measure of the cognitiveheterogeneity of the group. The group dialogues were transcribed and coded. Analysis revealed an interaction effect between task structure and cognitive abilityon students’ elaboration and metacognitive activities. Task structure had a negative effect on the elaborative contributions of high-ability students. For students with lower abilities, task structure had a positive effect onelaboration and metacognitive activities. No effects were found of the cognitive heterogeneity of the group. Group composition seemed not to be related to group interactionamong 11th grade pre-university students. The results indicate that open-ended collaborative tasks with little guidance and directions on how to handle them, canstimulate higher-order processes among high-ability students and may offer them the challenge they need.
MULTIFILE
Het ondergaan van een eenzijdige beenamputatie is een drastische chirurgische ingreep. Mensen, die na een amputatie in staat zijn om te lopen met een prothese, zijn functioneel onafhankelijker, en hebben een hogere kwaliteit van leven dan mensen die in een rolstoel belanden. Het is daarom niet verrassend dat het herwinnen van de oopvaardigheid één van de voornaamste doelen is tijdens de revalidatie. Doel van het onderzoek was om inzicht te krijgen in de factoren die het herwinnen en onderhouden van de loopvaardigheid van mensen na een beenamputatie beïnvloeden. Gebaseerd op de resultaten van het onderzoek kan geconcludeerd worden dat de fysieke capaciteit hierbij een belangrijke rol speelt. Een relatief kleine verbetering in de capaciteit kan al resulteren in significante en klinisch relevante verbeteringen. Hoewel geavanceerde prothesen de mechanische belasting van het lopen met een beenprothese verminderen, kan een ineffectieve balanscontrole deze positieve resultaten weer tenietdoen. ABSTRACT Undergoing a lower limb amputation is a life-changing surgery. The ability to walk greatly influences the subject's functional independence and quality of life. Not surprisingly, regaining walking ability is one of the primary goals during prosthetic rehabilitation. The primary aim of the research performed was to enhance our understanding of some of the factors that influence the ability to regain and maintain walking after a unilateral lower limb amputation. Based on the results we can deduce that a person's physical capacity plays an important role in their walking ability. Relatively small improvements in capacity could lead to significant and clinically relevant improvements in people's walking ability. Furthermore, results show that sophisticated prosthetic feet can reduce the mechanical load experienced when walking with a prosthesis. Interestingly, inefficient balance control strategies can undo any positive effect of these prostheses.
Manual labour is an important cornerstone in manufacturing and considering human factors and ergonomics is a crucial field of action from both social and economic perspective. Diverse approaches are available in research and practice, ranging from guidelines, ergonomic assessment sheets over to digitally supported workplace design or hardware oriented support technologies like exoskeletons. However, in the end those technologies, methods and tools put the working task in focus and just aim to make manufacturing “less bad” with reducing ergonomic loads as much as possible. The proposed project “Human Centered Smart Factories: design for wellbeing for future manufacturing” wants to overcome this conventional paradigm and considers a more proactive and future oriented perspective. The underlying vision of the project is a workplace design for wellbeing that makes labor intensive manufacturing not just less bad but aims to provide positive contributions to physiological and mental health of workers. This shall be achieved through a human centered technology approach and utilizing advanced opportunities of smart industry technologies and methods within a cyber physical system setup. Finally, the goal is to develop smart, shape-changing workstations that self-adapt to the unique and personal, physical and cognitive needs of a worker. The workstations are responsive, they interact in real time, and promote dynamic activities and varying physical exertion through understanding the context of work. Consequently, the project follows a clear interdisciplinary approach and brings together disciplines like production engineering, human interaction design, creative design techniques and social impact assessment. Developments take place in an industrial scale test bed at the University of Twente but also within an industrial manufacturing factory. Through the human centered design of adaptive workplaces, the project contributes to a more inclusive and healthier society. This has also positive effects from both national (e.g. relieve of health system) as well as individual company perspective (e.g. less costs due to worker illness, higher motivation and productivity). Even more, the proposal offers new business opportunities through selling products and/or services related to the developed approach. To tap those potentials, an appropriate utilization of the results is a key concern . The involved manufacturing company van Raam will be the prototypical implementation partner and serve as critical proof of concept partner. Given their openness, connections and broad range of processes they are also an ideal role model for further manufacturing companies. ErgoS and Ergo Design are involved as methodological/technological partners that deal with industrial engineering and ergonomic design of workplace on a daily base. Thus, they are crucial to critically reflect wider applicability and innovativeness of the developed solutions. Both companies also serve as multiplicator while utilizing promising technologies and methods in their work. Universities and universities of applied sciences utilize results through scientific publications and as base for further research. They also ensure the transfer to education as an important leverage to inspire and train future engineers towards wellbeing design of workplaces.
The project virtually breaks down a large timber structure into pieces and simultaneously simulates and tests each piece in a different laboratory or facility. In this way, unique aspects of each facility can be used at the same time. The experiments take place in a synchronized way, which is a difficult task considering 4 countries (UK, Canada, Greece and the Netherlands) will work at the same time for testing one hypothetical timber structure. Geographically distributed hybrid testing blue sky research, timber structure testing including soil-structure-interactionHYSTERESIS project aims to use geographically distributed hybrid testing for providing experimental evidence for energy dissipation and SSI response of buildings composed of mass timber and CLT panels. The project outcomes will give a boost to the efforts of building multi-story timber structures in areas with wind and/or earthquake loading conditions. The particularities of the problem in hand and the need for testing in large scale while taking into account the SSI, dictate using a novel hybrid testing approach.
Client: Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), with funding from the ministry of Education, Culture and Science (OCW)Funder: RAAK (Regional Attention and Action for Knowledge circulation)This research is co-funded by the Taskforce for Applied Research (SIA), part of the Netherlands Organisation for Scientific Research (NWO), under the RAAK scheme.Project SASTDes aimed to resolve key issues in the sustainability assessment process of tourism destinations, with the objective to reduce the costs of assessments both in time and money, and to use the results of assessments for destination branding and marketing. The project’s core research question was: ‘How can sustainability assessments effectively and efficiently contribute to the sustainable development of tourism destinations and tourism products?’ All 7 work packages of this project were ultimately geared towards the construction of the SASTDes tool, an application enabling all elements of a destination sustainability assessment, with which DMOs can integrate sustainability into their strategic and operational management. All the project’s accomplishments are described in the Project Overview report that can be downloaded on this page. See under Research Output for individual reports.The consortium was led by BUas’ Centre for Sustainability, Tourism and Transport (CSTT). Knowledge partners were BUas’ associate professorships Sustainable Business Models (SBM) and Leisure and Tourism Experiences, Wageningen Environmental Research (WENR), part of Wageningen University & Research (WUR), and the associate professorship Data Science & ICT of Avans University of Applied Sciences. The municipalities of Breda, Goeree-Overflakkee and Schouwen-Duiveland, as well as Visit Zuid-Limburg, joined as destination partners. Tourism industry partners and NGO’s were Green Destinations, Follow, TUI Benelux, SeaGoingGreen, Fair Sayari, ECEAT, Treinreiswinkel, and bookdifferent.com.