Service of SURF
© 2025 SURF
Recent economic crises, environmental problems and social challenges have urged us to drastically change our consumption and production patterns and transform organisations to contribute to socio-technical transitions that positively impact these challenges. Therefore, sustainable development and the transition towards a circular economy are gaining increased attention from academics and are being widely adopted by national and local governments, companies and other organisations and institutions. Since the implementation of more sustainable solutions lags behind expectations and technological possibilities, scholars and practitioners are increasingly seeing sustainable business model innovation as the key pathway to show the value potential of new sustainable technology and stress the importance of integrating the interests of multiple stakeholders and their economic, environmental and social value goals in the business model’s development. However, there is limited research that elucidates which stakeholders are actively involved, how they interact and what the effect is on the collaborative business modelling process for sustainability. This thesis addresses this research gap by building on the notion of business models as boundary-spanning activity-systems and studies stakeholder interaction from the level of a focal firm, as well as from the level of cross-sector actors collaborating in innovation ecosystems. Through four independent studies, three empirical studies and a design science study, this thesis aims to provide a better understanding of how stakeholder interaction affects collaborative business modelling for sustainability.The first study (Chapter 2) took a process perspective on interaction with network ties from the perspective of a focal firm. Based on two case studies of SMEs successfully introducing sustainable technology in the market, value shaping was identified as the operative mechanism describing the relation between networking and business modelling, from ideation to growth of the business. A stage model with five successive forms of value shaping describes how, in each stage, interaction with network ties help firms to clarify the types of economic, environmental and social value that a sustainable technology can deliver and who possible beneficiaries are. In return, changes in the business model clarify what other network ties are needed, demonstrating how the boundary-spanning function of business models spurs firms to expand and strengthen the value network.The second study (Chapter 3) focused on the commercialisation stage, in which a cognitive change in the manager’s mind was found during the development of a sustainable business model. Based on three empirical cases of business model innovations for sustainability, the study explored how stakeholder interaction may trigger and support managerial cognitive change and hence business model innovation. The findings suggest that the influence of stakeholders on the manager’s understanding of the business runs via three interrelated shaping processes: market approach shaping, product and/or service offering shaping and credibility shaping. In these shaping processes, new or latent stakeholders are found to have a bigger impact than existing ones. A research agenda is presented to further unravel the role of stakeholders affecting managerial cognition around business model innovation for sustainability.The third study (Chapter 4) examined innovation ecosystems’ processes of developing a collaborative business model for sustainability. Based on a study of four sustainably innovative cross-sector collaborations, this chapter studied how innovation ecosystems resolve the tensions that emerge from the collaborating actors’ divergent goals and interests. This study finds that innovation ecosystems engage in a process of valuing value that helps the actors to manage the tensions and find a balance of environmental, social and economic value creation and capture that satisfies all involved actors. The findings reveal that valuing value occurs in two different patterns – collective orchestration and continuous search – that open up a research agenda that can shed further light on the conditions that need to be in place in order for an innovation ecosystem to develop effective sustainable business models. The final study (Chapter 5) used a design science approach, developing a tool for innovation ecosystems’ actors to manage the degree to which stakeholders are involved throughout the process of collaborative business modelling for sustainability. The resulting ‘degree of engagement diagram’ and accompanying stepwise approach makes it possible to identify stakeholders from six cross-sector stakeholder groups that represent economic, social and environmental aspects of sustainable value and visualise their roles. By discriminating between four concentric and permeable circles of engagement, the tool integrates different degrees of involvement of stakeholders and enables users of the DoE diagram to accommodate changes that may occur in the evolving business model and its context. The tool enables innovation ecosystems’ actors to keep the collaboration manageable during the development of a joint and viable sustainable business model. Overall, this thesis extends the understanding of the dynamics of collaborative business modelling for sustainability and the role of stakeholder interaction therein. The research makes three key contributions to the sustainable business model innovation literature. First, it extends the literature by exploring the interplay between stakeholder interaction and business modelling over time. It establishes that stakeholder interaction and business modelling have a reciprocal relationship and contributes with two frameworks – value shaping and valuing value – that explain this reciprocal relationship for firms and innovation ecosystems. Second, the thesis unravels the micro-processes and mechanisms that elucidate how stakeholder interaction actually influences the direction into which the sustainable business model develops. Third, this thesis enriches the scholarly understanding of stakeholder interaction by identifying the main contributors to business model innovation for sustainability, by differentiating between stakeholders and their roles and by providing a tool that accommodates this. The research contributes to practice by offering practitioners useful insights on how they can increase, improve and effectuate stakeholder interaction in order to develop viable business models for sustainability and hence contribute to the desired socio-technical transitions.
Climate change is undermining the importance and sustainability of cooperatives as important organizations in small holder agriculture in developing countries. To adapt, cooperatives could apply carbon farming practices to reduce greenhouse gas emissions and enhance their business by increasing yields, economic returns and enhancing ecosystem services. This study aimed to identify carbon farming practices from literature and investigate the rate of application within cooperatives in Uganda. We reviewed scholarly literature and assed them based on their economic and ecological effects and trade-offs. Field research was done by through an online survey with smallholder farmers in 28 cooperatives across 19 districts in Uganda. We identified 11 and categorized them under three farming systems: organic farming, conservation farming and integrated farming. From the field survey we found that compost is the most applied CFP (54%), crop rotations (32%) and intercropping (50%) across the three categorizations. Dilemmas about right organic amendment quantities, consistent supplies and competing claims of residues for e.g. biochar production, types of inter crops need to be solved in order to further advance the application of CFPs amongst crop cooperatives in Uganda.
MULTIFILE
Sustainable consumption is interlinked with sustainable production. This chapter will introduce the closed-loop production, the circular economy, the steady state economy, and Cradle to Cradle (C2C) models of production. It will reflect on the key blockages to a meaningful sustainable production and how these could be overcome, particularly in the context of business education. The case study of the course for bachelor’s students within International Business Management Studies (IBMS) program at three Universities of Applied Science (vocational schools), and at Leiden University College in The Netherlands will be discussed. Student teams from these schools were given the assignment to make a business plan for a selected sponsor company in order to advise them how to make a transition from a linear to circular economy model. These case studies will illustrate the opportunities as well as potential pitfalls of the closed loop production models. The results of case studies’ analysis show that there was a mismatch between expectations of the sponsor companies and those of students on the one hand and a mismatch between theory and practice on the other hand. The former mismatch is explained by the fact that the sponsor companies have experienced a number of practical constraints when confronted with the need for the radical overhaul of established practices within the entire supply chain and students have rarely considered the financial viability of the "ideal scenarios" of linear-circular transitions. The latter mismatch applies to what students had learned about macro-economic theory and the application through micro-economic scenarios in small companies. https://www.springer.com/gp/book/9783319656076 LinkedIn: https://www.linkedin.com/in/helenkopnina/
MULTIFILE
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.
Plastic products are currently been critically reviewed due to the growing awareness on the related problems, such as the “plastic soup”. EU has introduced a ban for a number of single-use consumer products and fossil-based polymers coming in force in 2021. The list of banned products are expected to be extended, for example for single-use, non-compostable plastics in horticulture and agriculture. Therefore, it is crucial to develop sustainable, biodegradable alternatives. A significant amount of research has been performed on biobased polymers. However, plastics are made from a polymer mixed with other materials, additives, which are essential for the plastics production and performance. Development of biodegradable solutions for these additives is lacking, but is urgently needed. Biocarbon (Biochar), is a high-carbon, fine-grained residue that is produced through pyrolysis processes. This natural product is currently used to produce energy, but the recent research indicate that it has a great potential in enhancing biopolymer properties. The biocarbon-biopolymer composite could provide a much needed fully biodegradable solution. This would be especially interesting in agricultural and horticultural applications, since biocarbon has been found to be effective at retaining water and water-soluble nutrients and to increase micro-organism activity in soil. Biocarbon-biocomposite may also be used for other markets, where biodegradability is essential, including packaging and disposable consumer articles. The BioADD consortium consists of 9 industrial partners, a branch organization and 3 research partners. The partner companies form a complementary team, including biomass providers, pyrolysis technology manufacturers and companies producing products to the relevant markets of horticulture, agriculture and packaging. For each of the companies the successful result from the project will lead to concrete business opportunities. The support of Avans, University of Groningen and Eindhoven University of Technology is essential in developing the know-how and the first product development making the innovation possible.
The textile industry faces a significant environmental challenge, annually generating 45 million tons of waste cotton textiles, of which 75% are incinerated or sent to landfills, causing environmental harm. Additionally, 67% of garments are made of plastic fibers, and when disposed of in landfills, 5% of them turn into microplastics that can end up on our plates. Chicfashic proposes an innovative biotech process to address these issues by recovering and recycling plastic fibers while transforming natural fibers into bio-based molecules. These molecules are then used as secondary raw materials to produce bio-based pigments for textiles. The project aims to optimize this process and test it on a larger scale with the assistance of HAN BioCentre. This initiative aligns with Dutch government and EU regulations mandating textile recycling by 2050. The technology used is patent pending and does not involve the use of toxic chemicals or the release of harmful wastewater or fumes, contributing to a shift towards a more circular and sustainable textile industry by reintegrating natural colorants into textile production.