Service of SURF
© 2025 SURF
A bacterium belonging to the Bacillus firmus/lentus-complex and capable of growth on native potato starch was isolated from sludge of a pilot plant unit for potato-starch production. Utilization of a crude enzyme preparation obtained from the culture fluid after growth of the microorganism on native starch, resulted in complete degradation of native starch granules from potato, maize and wheat at a temperature of 37°C. Glucose was found as a major product. Production of maltose, maltotriose and maltotetraose was also observed. Native-starch-degrading activity (NSDA) could be selectively adsorbed on potato-starch granules, whereas soluble-starch-degrading activity (SSDA) remained mainly in solution. The use of such a starch-adsorbed enzyme preparation on native starch resulted in a completely changed product pattern. An increase in oligosaccharides concomitant with less glucose formation was observed. An increased conversion of soluble starch to maltopentaose was possible with this starch-adsorbed enzyme preparation. It is concluded that NSDA comes from α-amylase(s) and SSDA from glucoamylase(s) and/or α-glucosidase(s). Cultivation of B. firmus/lentus on glucose, maltose, or soluble starch resulted in substantially smaller quantities of (native) starch-degrading activity.
LINK
Chain-extended starch is prepd. in that starch is polymd. in an aq. soln. at pH 6.0-8.3 by means of glucosyl fluoride in the presence of inorg. phosphate, sucrose phosphorylase, and potato phosphorylase. [on SciFinder(R)]
ALIFE:The “as eaten” method to measure the Total Dietary Fibre content was implemented at the Hanze University of Applied Sciences (WP 4). The enzymatic treatment with the GtfB enzyme clearly resulted in an increased fibre content of starch from 1.6% to approx. 20% (fig A). When using this modified starch (“as eaten” treated) in an incubation with colon bacteria we see a similar pattern as when using FOS and GOS (fig B). The qPCR results indicate a significant stimulation of the growth of gut bacteria by the GtfB modified starch, as shown by the relative increase of Bacteroides and to a lesser extent Lactobacilli (fig.C). The prebiotic effect remains to be evaluated.
Nederland heeft hoge ambities rond de ontwikkeling van duurzame coatings die o.a. ingezet worden in de agrosector ter bescherming van gewassen en om opbrengsten te maximaliseren. De toepassing van de huidige op olie gebaseerde coatings wordt in de komende jaren in de EU uitgefaseerd. Niet alleen omdat ze op olie zijn gebaseerd maar ook omdat ze bij afbraak kunnen leiden tot vervuilende microplastics. Vanuit de markt is er daarom een grote behoefte aan alternatieven. Een alternatief zijn biobased coatings. De nieuwe biobased grondstof Kaumera kan een bijdrage leveren aan de ontwikkeling van deze biobased coatings. Op de afvalwaterzuiveringsinstallatie Zutphen (in beheer bij Waterschap Rijn en IJssel) wordt sinds 2020 de Kaumera gewonnen uit aeroob korrelslib. De toepassing van Kaumera beperkt zich op dit moment tot toepassing als biostimulant in de land- en tuinbouw. Kaumera heeft echter ook eigenschappen die kansen bieden voor toepassingen in biobased coatings in de agro-sector. In 2023 is door Avans samen met het waterschap een studentenproject uitgevoerd waarin gekeken is naar de chemische modificatie van Kaumera door middel van een carboxymethylering. Dit resulteerde in een uniek materiaal: carboxymethyl-Kaumera (CMK). In dit Kaumeleon project gaat het consortium bestaande uit het Waterschap Rijn en IJsel, Dynaplak Adhesive and Starches B.V. en Avans Hogeschool kijken naar het verder ontwikkelen van dit CMK richting specifieke toepassingen in coatings. De vragen die centraal staat zijn: hoe kan carboxymethylering van Kaumera worden geoptimaliseerd, welke eigenschappen levert dit op, en wordt het product daarmee geschikt voor toepassing als biobased coating? Met dit project beoogt het consortium op de middellange termijn een bijdrage te leveren aan het vervangen van primaire grondstoffen door duurzame biobased alternatieven uit reststromen, en zo aan het verduurzamen van de chemische industrie.
The building industry is a major target for resource-efficiency developments, which are crucial in European Union’s roadmaps. Using renewable materials impacts the sustainability of buildings and is set as urgent target in current architectural practice. The building industry needs renewable materials positively impacting the CO2 footprint without drawbacks. The use of wood and timber as renewable construction materials has potentials, but also drawbacks because trees need long time to grow; producing timber generates considerable waste; and the process from trees to applications in buildings requires transportation and CO2 emission. This research generates new scientific knowledge and a feasibility study for a new wood-like bio-material - made of cellulose and lignin from (local) residual biomass via i.e. 3D printing - suitable for applications in the building industry. It contributes to a sustainable built environment as it transforms waste from different sectors into a local resource to produce a low carbon-footprint bio-material for the construction sector. Through testing, the project will study the material properties of samples of raw and 3D printed material, correlating different material recipes that combine lignin and cellulose and different 3D printing production parameters. It will map the material properties with the requirements of the construction industry for different building products, indicating potentials and limits of the proposed bio-material. The project will produce new knowledge on the material properties, a preliminary production concept and an overview of potentials and limits for application in the built environment. The outcome will be used by industry to achieve a marketable new bio-material; as well as in further scientific academic research.