Service of SURF
© 2025 SURF
Background/aim We aimed to investigate the magnitude and characteristics of injuries and illnesses in Dutch physical education teacher education (PETE) students.Methods During the first 21 weeks of the academic year, 245 first-year students registered their health problems online using the Oslo Sports Trauma Research Centre (OSTRC) Questionnaire on Health Problems.Results A total of 276 injuries, 140 illnesses and 69 unclassified health problems were reported. We found an injury incidence rate of 11.7 injuries per 1000 hours (95% CI 10.4 to 13.2). Injury characteristics were: 42% overuse injuries, 62% causing absence from sports (median injury time loss=2 days) and 64% reinjuries. Most injuries were located at the knee, lower leg (anterior) and ankle. The duration of the illnesses was short (<1 week).Summary and conclusions We implemented a new registration method in the PETE academic programme. The results show that the risk for health problems is high for PETE students. Prevention is necessary, and to decrease injuries prevention programmes should focus on the lower extremities.
Context: Only 55% of the athletes return to competitive sports after an anterior cruciate ligament (ACL) injury. Athletes younger than 25 years who return to sports have a second injury rate of 23%. There may be a mismatch between rehabilitation contents and the demands an athlete faces after returning to sports. Current return-to-sports (RTS) tests utilize closed and predictable motor skills; however, demands on the field are different. Neurocognitive functions are essential to manage dynamic sport situations and may fluctuate after peripheral injuries. Most RTS and rehabilitation paradigms appear to lack this aspect, which might be linked to increased risk of second injury.Objective: This systematic and scoping review aims to map existing evidence about neurocognitive and neurophysiological functions in athletes, which could be linked to ACL injury in an integrated fashion and bring an extensive perspective to assessment and rehabilitation approaches.Data Sources: PubMed and Cochrane databases were searched to identify relevant studies published between 2005 and 2020 using the keywords ACL, brain, cortical, neuroplasticity, cognitive, cognition, neurocognition, and athletes.Study Selection: Studies investigating either neurocognitive or neurophysiological functions in athletes and linking these to ACL injury regardless of their design and technique were included.Study Design: Systematic review. Level of Evidence: Level 3.Data Extraction: The demographic, temporal, neurological, and behavioral data revealing possible injury-related aspects were extracted and summarized.Results: A total of 16 studies were included in this review. Deficits in different neurocognitive domains and changes in neurophysiological functions could be a predisposing risk factor for, or a consequence caused by, ACL injuries.Conclusion: Clinicians should view ACL injuries not only as a musculoskeletal but also as a neural lesion with neurocognitive and neurophysiological aspects. Rehabilitation and RTS paradigms should consider these changes for assessment and interventions after injury.
The aim of this study is to investigate the predictivevalue of landing stability and technique togain insight into risk factors for ankle and kneeinjuries in indoor team sport players. Seventyfivemale and female basketball, volleyball orkorfball players were screened by measuringlanding stability after a single-leg jump landingand landing technique during a repeated countermovement jump by detailed 3-dimensional kinematicsand kinetics. During the season 11 acuteankle injuries were reported along with 6 acuteand 7 overuse knee injuries by the teams’ physicaltherapist. Logistic regression analysis showedless landing stability in the forward and diagonaljump direction (OR 1.01–1.10, p ≤ 0.05) in playerswho sustained an acute ankle injury. Furthermorelanding technique with a greater ankle dorsiflexionmoment increased the risk for acuteankle injury (OR 2.16, p ≤ 0.05). A smaller kneeflexion moment and greater vertical groundreaction force increased the risk of an overuseknee injury (OR 0.29 and 1.13 respectively,p ≤ 0.05). Less one-legged landing stability andsuboptimal landing technique were shown inplayers sustaining an acute ankle and overuseknee injury compared to healthy players. Determiningboth landing stability and technique mayfurther guide injury prevention programs.
Ballet en moderne dans zijn een vorm van topsport. De druk op dansers is enorm. Lange en intensieve werkdagen, veel reizen en verschillende werkplekken maken het lastig om lichaam en geest goed te verzorgen. Hierdoor liggen blessures en mentale klachten op de loer. Nederlandse dansgezelschappen willen meer aandacht gaan besteden aan preventieve maatregelen om fysieke en mentale problemen bij hun dansers te voorkomen. Het ontbreekt hen echter aan kennis en kunde om dit innovatieve vraagstuk op te kunnen pakken. Het Nationale Ballet en het Scapino Ballet hebben het lectoraat Performing Arts Medicine van Codarts (Hogeschool voor de Kunsten Rotterdam) benaderd om antwoord te krijgen op de vraag hoe dansers op de hoogste podia, op gezonde wijze, hun beste performance kunnen laten zien. Gezamenlijk is deze praktijkvraag omgevormd naar drie onderzoeksdoelstellingen: 1. Opstellen van meetinstrumenten om de fysieke en mentale gezondheid van dansers te screenen en te monitoren; 2. Ontwerpen van een web-based systeem dat automatisch en real-time informatie uit de ontwikkelde meetinstrumenten kan inlezen, analyseren en interpreteren; 3. Ontwikkelen van een Fit to Perform protocol dat aanbevelingen geeft ten aanzien van het verbeteren van de fysieke en mentale gesteldheid van de danser. Het consortium bestaat uit de volgende organisaties: - Praktijkgerichte onderzoeksinstellingen: Codarts Rotterdam en Hogeschool van Amsterdam; - Universiteiten: ErasmusMC, Technische Universiteit Eindhoven en Vrije Universiteit Amsterdam; - Praktijkinstellingen: Het Nationale Ballet en het Scapino Ballet; - Overige instellingen: het Nederlands Paramedisch Instituut (NPi) en het Nationale Centrum Performing Arts (NCPA). Bij de samenstelling van het consortium is gekozen voor een goede mix tussen praktijkorganisaties, onderzoeksinstituten en onderwijsinstellingen. Daarnaast is er sprake van cross-sectorale samenwerking doordat kennis vanuit de podiumkunsten, sport, gezondheidszorg, onderwijs en technologie met elkaar verbonden wordt.
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.
Sport injuries are a major reason for reduced participation and drop-out from sports and PE. Refraining from sport participation has negative bearing effects on mental and physical wellbeing, which tracks into adulthood. It is therefore important for youth to be facilitated into lifelong active participation in physical activity and sport, as the importance of physical activity for the health of youth is undisputed. Participation in physical education (PE) classes and membership of sports clubs and are essential for health enhancing physical activity. Despite the importance of sports injury prevention in youth, no broad scale approaches that work in real-life situations with significant positive effects exist. Main reasons for this are very poor uptake and maintenance of current sports injury prevention exercises. Sportscoaches and physical educators experience these exercises as not context specific, time consuming and not contributing to their training goals. Whereas youth perceives these exercises as not attractive, no fun and without any play or game component. These aspects cause lack of maintenance and thus no significant reduction of injuries. Recent scientific and practical insights promote more emphasis on motivation through autonomy and attractive exercise routines based on principles of motor learning which can be integrated in regular training sessions or physical education classes. Purpose: Therefore, the Move Healthy project develops ICT based support video material of routines for and with physical educators and sport coaches, which supports them to prevent sports injuries in youth. This material should be easy to integrate in regular training sessions or physical education classes.