Service of SURF
© 2025 SURF
Channel State Information (CSI) analysis for Predictive Maintenance using Convolutiona Neural Network (CNN).
MULTIFILE
This paper compares different low-cost sensors that can measure (5G) RF-EMF exposure. The sensors are either commercially available (off-the-shelf Software Defined Radio (SDR) Adalm Pluto) or constructed by a research institution (i.e., imec-WAVES, Ghent University and Smart Sensor Systems research group (S3R), The Hague University of Applied Sciences). Both in-lab (GTEM cell) and in-situ measurements have been performed for this comparison. The in-lab measurements tested the linearity and sensitivity, which can then be used to calibrate the sensors. The in-situ testing confirmed that the low-cost hardware sensors and SDR can be used to assess the RF-EMF radiation. The variability between the sensors was 1.78 dB on average, with a maximum deviation of 5.26 dB. Values between 0.09 V/m and 2.44 V/m were obtained at a distance of about 50 m from the base station. These devices can be used to provide the general public and governments with temporal and spatial 5G electromagnetic field values.
The aim of the present investigation was to evaluate the effect of visual feedback on rating voice quality severity level and the reliability of voice quality judgment by inexperienced listeners. For this purpose two training programs were created, each lasting 2 hours. In total 37 undergraduate speech–language therapy students participated in the study and were divided into a visual plus auditory-perceptual feedback group (V + AF), an auditory-perceptual feedback group (AF), and a control group with no feedback (NF). All listeners completed two rating sessions judging overall severity labeled as grade (G), roughness (R), and breathiness (B). The judged voice samples contained the concatenation of continuous speech and sustained phonation. No significant rater reliability changes were found in the pre- and posttest between the three groups in every GRB-parameter (all p > 0.05). There was a training effect seen in the significant improvement of rater reliability for roughness within the NF and AF groups (all p < 0.05), and for breathiness within the V + AF group (p < 0.01). The rating of the severity level of roughness changed significantly after the training in the AF and V + AF groups (p < 0.01), and the breathiness severity level changed significantly after the training in the V + AF group (p < 0.01). The training of V + AF and AF may only minimally influence the reliability in the judgment of voice quality but showed significant influence on rating the severity level of GRB parameters. Therefore, the use of both visual and auditory anchors while rating as well as longer training sessions may be required to draw a firm conclusion.
LINK