Service of SURF
© 2025 SURF
De Experience Tool: Mapping facts and practice to develop (spatial) experiences (Moes, Schrandt, Manuputty, Admiraal & van der Mark, 2019), is in eerste instantie ontwikkeld door docent-onderzoekers en een oud-student van het Amsterdam Fashion Institute (AMFI) om studenten beter onderbouwde afwegingen te laten maken over inrichting van bijvoorbeeld metrostations, winkels maar ook tentoonstellingen. De toolkit is dus niet ontwikkeld in het kader van Designing Experiencescapes of De Tentoonstellingsmaker van de 21ste Eeuw, maar deze onderzoeken hebben wel een belangrijke inhoudelijke basis gegeven voor de toolkit en zijn dus zeer relevant voor de (toekomstige) tentoonstellingsmaker. Het doel van deze tool is om spelers te inspireren bij en informeren over het creëren van belevingen in (hoofdzakelijk) fysieke ruimtes. De tool is voor iedereen die geïnteresseerd is in het creëren van belevingen en met name interessant voor studenten die een beleving willen neerzetten, in welke vorm dan ook en professionals uit de museale en de retailsector die invloed hebben op het inrichten van fysieke ruimtes.
MULTIFILE
This report is the second in a series of three reports named Value Added Planning, consisting of three unique, but interconnected tools, namely the Green Credit Tool, the Workbench Method and Value Added Planning, These tools have been developed and/or tested in the context of the European INTERREG programme: VALUE (INTERREG IVB North West Europe - Valuing Attractive Landscapes in the Urban Economy), in which the municipality of Amersfoort is involved. Aim of this programme is to understand how green space in urban centres can become more competitive with other urban functions. In this context, the municipality of Amersfoort has introduced the interactive method named Workbench Spatial Quality (Werkbank Ruimtelijke Kwaliteit in Dutch) in their spatial design in several areas in their municipality. The Workbench Spatial Quality (to be referred to as Workbench) has been applied on two cases in Amersfoort: Park Randenbroek and Vathorst NW. In this report the Workbench as applied in Amersfoort is evaluated. Research was done on the basis of literature research, case-material and interviews performed with several experts. Furthermore, research was done by students at the Wageningen University and Research Centre (WUR). Part of the evaluation in this report makes use of a quick scan of 19 Dutch cases. The question addressed in this report is: 1.How was the Workbench Spatial Quality applied in Amersfoort? 2.Can the Workbench contribute to sustainable spatial planning?
MULTIFILE
The MSP Challenge uses game technology and role-play to support communication and learning for Marine/Maritime Spatial Planning. Since 2011, a role-playing game, a board game and a digital interactive simulation platform have been developed. The MSP Challenge editions have been used in workshops, conferences, education, as well as for real life stakeholder engagement. The authors give an overview of the development of the MSP Challenge and reflect on the value of the approach as an engaging and ‘fun’ tool for building mutual understanding and communicating MSP.
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
KnowledgeFlows in Marine Spatial Planning - Sharing Innovation in Higher Education(KnowledgeFlows) aims at further enforcing the European higher education community to meet the growing demands for knowledge, skills and innovation within the still emerging field of marine or maritime spatial planning (MSP).Marine Spatial Planning (MSP) is an emerging governmental approach towards a more effective use of the sea. MSP is of great interest in Europe and can be considered a societal process to balance conflicting interests of maritime stakeholders and the marine environment. Many different activities take place at sea, ranging from shipping, fisheries, to offshore wind energy activities. Simultaneously, new and evolving policies focus on strategies to integrate different marine demands in space and resources. MSP is now legally binding in the EU and is much needed approach to manage and organize the use of the sea, while also protecting the environment.KnowledgeFlows will contribute to the development of new innovative approaches to higher education and training on MSP by means of problem-based learning schemes, transdisciplinary collaboration, and advanced e-learning concepts. KnowledgeFlows builds on results from former project outputs (Erasmus+ Strategic Partnership for Marine Spatial Planning SP-MSP), such as the online learning platform MSP Education Arena (https://www.sp-msp.uol.de).The strategic partnership consists of a transnational network of experts both in research and in practice based in the north Atlantic, Baltic Sea and North Sea Regions including Aalborg University (DK, lead partner), The University of Oldenburg (D), the University of Liverpool (U.K.), the University of Nantes (F), the Leibniz Institute for Baltic Sea Research (D), the Breda University of Applied Sciences (NL), University of Ulster (U.K.), and the Finnish Environment Institute (FI). Gothenburg University, also being a higher education organisation, will be associated partner.Furthermore, three international organisations, the Marine Spatial Planning Research Network, the Baltic inter-governmental VASAB and the pan-Nordic Nordregio will be involved in the partnership as associated organisations deeply rooted in the MSP community of practice.The further improvement of curricula, exchange of knowledge and experts, and transparency and recognition of learning outcomes to reach higher qualifications in MSP are key components of KnowledgeFlows. A mutual learning environment for MSP higher education will enable problem-driven innovation among students and their educators from research and governance also involving stakeholders. Related activities on intellectual outputs, multiplier events and lecturing will be carried out by all participating organisations.The intellectual outputs are related to three major contributions to the European higher education landscape:1) an advanced level international topical MSP course (Step-up MSP)2) digital learning facilities and tools (MSP Education Arena)3) designing problem-based learning in MSP (MSP directory)The advanced level inter-institutional topical MSP course will include different teaching and training activities within a problem-based learning environment. Digital learning facilities enabling communication and training will include a further enrichment of the MSP Education Arena platform for students, practitioners and lecturers for including modules forcollaborate learning activities, documentation and dissemination, mobilisation/recruitment, thesis opportunities, placements/internships. Designing problem-based learning in MSP will include topics as; the design of didactics and methods; guidance for lecturers, supervisors and students; evaluation and quality assurance; assessment.Five multiplier events back to back or as part of conferences within the MSP community will be organised to mainstream the outputs and innovative MSP didactics among other universities and institutions.Different teaching and training activities feeds into the intellectual output activities, which will include serious gaming sessions (MSP Challenge (http://www.mspchallenge.info/) and others), workshops, excursions, courses/classes as well as a conference with a specific focus on facilitating the exchange of innovative ideas and approaches among students at bachelor´s, master´s and doctoral level and the MSP community of practice.Project management meetings (twice a year) will assure coherence in project planning and implementation. As the core focus of the strategic partnership is on collaboration, mutual learning, and innovation among educators, students, and practitioners in order to meet actual and future needs regarding knowledge exchange and training within the MSP community, the project will be designed to have long lasting effects.Results
The PhD research by Joris Weijdom studies the impact of collective embodied design techniques in collaborative mixed-reality environments (CMRE) in art- and engineering design practice and education. He aims to stimulate invention and innovation from an early stage of the collective design process.Joris combines theory and practice from the performing arts, human-computer interaction, and engineering to develop CMRE configurations, strategies for its creative implementation, and an embodied immersive learning pedagogy for students and professionals.This lecture was given at the Transmedia Arts seminar of the Mahindra Humanities Center of Harvard University. In this lecture, Joris Weijdom discusses critical concepts, such as embodiment, presence, and immersion, that concern mixed-reality design in the performing arts. He introduces examples from his practice and interdisciplinary projects of other artists.About the researchMultiple research areas now support the idea that embodiment is an underpinning of cognition, suggesting new discovery and learning approaches through full-body engagement with the virtual environment. Furthermore, improvisation and immediate reflection on the experience itself, common creative strategies in artist training and practice, are central when inventing something new. In this research, a new embodied design method, entitled Performative prototyping, has been developed to enable interdisciplinary collective design processes in CMRE’s and offers a vocabulary of multiple perspectives to reflect on its outcomes.Studies also find that engineering education values creativity in design processes, but often disregards the potential of full-body improvisation in generating and refining ideas. Conversely, artists lack the technical know-how to utilize mixed-reality technologies in their design process. This know-how from multiple disciplines is thus combined and explored in this research, connecting concepts and discourse from human-computer interaction and media- and performance studies.This research is a collaboration of the University of Twente, Utrecht University, and HKU University of the Arts Utrecht. This research is partly financed by the Dutch Research Council (NWO).Mixed-reality experiences merge real and virtual environments in which physical and digital spaces, objects, and actors co-exist and interact in real-time. Collaborative Mix-Reality Environments, or CMRE's, enable creative design- and learning processes through full-body interaction with spatial manifestations of mediated ideas and concepts, as live-puppeteered or automated real-time computer-generated content. It employs large-scale projection mapping techniques, motion-capture, augmented- and virtual reality technologies, and networked real-time 3D environments in various inter-connected configurations.This keynote was given at the IETM Plenary meeting in Amsterdam for more than 500 theatre and performing arts professionals. It addresses the following questions in a roller coaster ride of thought-provoking ideas and examples from the world of technology, media, and theatre:What do current developments like Mixed Reality, Transmedia, and The Internet of Things mean for telling stories and creating theatrical experiences? How do we design performances on multiple "stages" and relate to our audiences when they become co-creators?Contactjoris.weijdom@hku.nl / LinkedIn profileThis research is part of the professorship Performative Processes