Service of SURF
© 2025 SURF
1e alinea column: De ontstellende hoeveelheid informatie en contactmogelijkheden op internet stelt ons voor de keuze wie we willen zijn en volgens welke waarden we willen leven. Waar Internet 1.0 nog vooral gezien kon worden als een grote database met Google als markt-hit, speelt in het semantic web sociale interactie een grote rol. In het semantic web kan alle data en dus bijvoorbeeld ook al uw berichtjes, profielgegevens, bestandjes en teksten en dat van anderen, nog gemakkelijker verspreid, gecombineerd, maar ook geanalyseerd en op maat worden gepresenteerd. Op iedere unieke vraag of zoekopdracht direct dus een uniek antwoord.
LINK
Preprint submitted to Information Processing & Management Tags are a convenient way to label resources on the web. An interesting question is whether one can determine the semantic meaning of tags in the absence of some predefined formal structure like a thesaurus. Many authors have used the usage data for tags to find their emergent semantics. Here, we argue that the semantics of tags can be captured by comparing the contexts in which tags appear. We give an approach to operationalizing this idea by defining what we call paradigmatic similarity: computing co-occurrence distributions of tags with tags in the same context, and comparing tags using information theoretic similarity measures of these distributions, mostly the Jensen-Shannon divergence. In experiments with three different tagged data collections we study its behavior and compare it to other distance measures. For some tasks, like terminology mapping or clustering, the paradigmatic similarity seems to give better results than similarity measures based on the co-occurrence of the documents or other resources that the tags are associated to. We argue that paradigmatic similarity, is superior to other distance measures, if agreement on topics (as opposed to style, register or language etc.), is the most important criterion, and the main differences between the tagged elements in the data set correspond to different topics
Retail industry consists of the establishment of selling consumer goods (i.e. technology, pharmaceuticals, food and beverages, apparels and accessories, home improvement etc.) and services (i.e. specialty and movies) to customers through multiple channels of distribution including both the traditional brickand-mortar and online retailing. Managing corporate reputation of retail companies is crucial as it has many advantages, for instance, it has been proven to impact generated revenues (Wang et al., 2016). But, in order to be able to manage corporate reputation, one has to be able to measure it, or, nowadays even better, listen to relevant social signals that are out there on the public web. One of the most extensive and widely used frameworks for measuring corporate reputation is through conducting elaborated surveys with respective stakeholders (Fombrun et al., 2015). This approach is valuable but deemed to be laborious and resource-heavy and will not allow to generate automatic alerts and quick and live insights that are extremely needed in this era of internet. For these purposes a social listening approach is needed that can be tailored to online data such as consumer reviews as the main data source. Online review datasets are a form of electronic Word-of-Mouth (WOM) that, when a data source is picked that is relevant to retail, commonly contain relevant information about customers’ perceptions regarding products (Pookulangara, 2011) and that are massively available. The algorithm that we have built in our application provides retailers with reputation scores for all variables that are deemed to be relevant to retail in the model of Fombrun et al. (2015). Examples of such variables for products and services are high quality, good value, stands behind, and meets customer needs. We propose a new set of subvariables with which these variables can be operationalized for retail in particular. Scores are being calculated using proportions of positive opinion pairs such as <fast, delivery> or <rude, staff> that have been designed per variable. With these important insights extracted, companies can act accordingly and proceed to improve their corporate reputation. It is important to emphasize that, once the design is complete and implemented, all processing can be performed completely automatic and unsupervised. The application makes use of a state of the art aspect-based sentiment analysis (ABSA) framework because of ABSA’s ability to generate sentiment scores for all relevant variables and aspects. Since most online data is in open form and we deliberately want to avoid labelling any data by human experts, the unsupervised aspectator algorithm has been picked. It employs a lexicon to calculate sentiment scores and uses syntactic dependency paths to discover candidate aspects (Bancken et al., 2014). We have applied our approach to a large number of online review datasets that we sampled from a list of 50 top global retailers according to National Retail Federation (2020), including both offline and online operation, and that we scraped from trustpilot, a public website that is well-known to retailers. The algorithm has carefully been evaluated by manually annotating a randomly sampled subset of the datasets for validation purposes by two independent annotators. The Kappa’s score on this subset was 80%.
MULTIFILE
Client: Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW) Funder: RAAK (Regional Attention and Action for Knowledge circulation) The RAAK scheme is managed by the Foundation Innovation Alliance (SIA - Stichting Innovatie Alliantie) with funding from the ministry of Education, Culture and Science (OCW). Early 2013 the Centre for Sustainable Tourism and Transport started work on the RAAK-MKB project ‘Carbon management for tour operators’ (CARMATOP). Besides NHTV, eleven Dutch SME tour operators, ANVR, HZ University of Applied Sciences, Climate Neutral Group and ECEAT initially joined this 2-year project. The consortium was later extended with IT-partner iBuildings and five more tour operators. The project goal of CARMATOP was to develop and test new knowledge about the measurement of tour package carbon footprints and translate this into a simple application which allows tour operators to integrate carbon management into their daily operations. By doing this Dutch tour operators are international frontrunners.Why address the carbon footprint of tour packages?Global tourism contribution to man-made CO2 emissions is around 5%, and all scenarios point towards rapid growth of tourism emissions, whereas a reverse development is required in order to prevent climate change exceeding ‘acceptable’ boundaries. Tour packages have a high long-haul and aviation content, and the increase of this type of travel is a major factor in tourism emission growth. Dutch tour operators recognise their responsibility, and feel the need to engage in carbon management.What is Carbon management?Carbon management is the strategic management of emissions in one’s business. This is becoming more important for businesses, also in tourism, because of several economical, societal and political developments. For tour operators some of the most important factors asking for action are increasing energy costs, international aviation policy, pressure from society to become greener, increasing demand for green trips, and the wish to obtain a green image and become a frontrunner among consumers and colleagues in doing so.NetworkProject management was in the hands of the Centre for Sustainable Tourism and Transport (CSTT) of NHTV Breda University of Applied Sciences. CSTT has 10 years’ experience in measuring tourism emissions and developing strategies to mitigate emissions, and enjoys an international reputation in this field. The ICT Associate Professorship of HZ University of Applied Sciences has longstanding expertise in linking varying databases of different organisations. Its key role in CARMATOP was to create the semantic wiki for the carbon calculator, which links touroperator input with all necessary databases on carbon emissions. Web developer ibuildings created the Graphical User Interface; the front end of the semantic wiki. ANVR, the Dutch Association of Travel Agents and Tour operators, represents 180 tour operators and 1500 retail agencies in the Netherlands, and requires all its members to meet a minimum of sustainable practices through a number of criteria. ANVR’s role was in dissemination, networking and ensuring CARMATOP products will last. Climate Neutral Group’s experience with sustainable entrepreneurship and knowledge about carbon footprint (mitigation), and ECEAT’s broad sustainable tourism network, provided further essential inputs for CARMATOP. Finally, most of the eleven tour operators are sustainable tourism frontrunners in the Netherlands, and are the driving forces behind this project.