Service of SURF
© 2025 SURF
We investigated to what extent correctional officers were able to apply skills from their self-defence training in reality-based scenarios. Performance of nine self-defence skills were tested in different scenarios at three moments: before starting the self-defence training programme (Pre-test), halfway through (Post-test 1), and after (Post-test 2). Repeated measures analyses showed that performance on skills improved after the self-defence training. For each skill, however, there was a considerable number of correctional officers (range 4–73%) that showed insufficient performance on Post-test 2, indicating that after training they were not able to properly apply their skills in reality-based scenarios. Reality-based scenarios may be used to achieve fidelity in assessment of self-defence skills of correctional officers.Practitioner summary: Self-defence training for correctional officers must be representative for the work field. By including reality-based scenarios in assessment, this study determined that correctional officers were not able to properly apply their learned skills in realistic contexts. Reality-based scenarios seem fit to detect discrepancies between training and the work field. Abbreviations: DJI: Dutch National Agency for Correctional Insitutes; ICC: Intraclass Correlation Coefficient.
We investigated the effects of reflex-based self-defence training on police performance in simulated high-pressure arrest situations. Police officers received this training as well as a regular police arrest and self-defence skills training (control training) in a crossover design. Officers' performance was tested on several variables in six reality-based scenarios before and after each training intervention. Results showed improved performance after the reflex-based training, while there was no such effect of the regular police training. Improved performance could be attributed to better communication, situational awareness (scanning area, alertness), assertiveness, resolution, proportionality, control and converting primary responses into tactical movements. As officers trained complete violent situations (and not just physical skills), they learned to use their actions before physical contact for de-escalation but also for anticipation on possible attacks. Furthermore, they learned to respond against attacks with skills based on their primary reflexes. The results of this study seem to suggest that reflex-based self-defence training better prepares officers for performing in high-pressure arrest situations than the current form of police arrest and self-defence skills training. Practitioner Summary: Police officers' performance in high-pressure arrest situations improved after a reflex-based self-defence training, while there was no such effect of a regular police training. As officers learned to anticipate on possible attacks and to respond with skills based on their primary reflexes, they were better able to perform effectively.
Virtual training systems provide highly realistic training environments for police. This study assesses whether a pain stimulus can enhance the training responses and sense of the presence of these systems. Police officers (n = 219) were trained either with or without a pain stimulus in a 2D simulator (VirTra V-300) and a 3D virtual reality (VR) system. Two (training simulator) × 2 (pain stimulus) ANOVAs revealed a significant interaction effect for perceived stress (p =.010, ηp2 =.039). Post-hoc pairwise comparisons showed that VR provokes significantly higher levels of perceived stress compared to VirTra when no pain stimulus is used (p =.009). With a pain stimulus, VirTra training provokes significantly higher levels of perceived stress compared to VirTra training without a pain stimulus (p <.001). Sense of presence was unaffected by the pain stimulus in both training systems. Our results indicate that VR training appears sufficiently realistic without adding a pain stimulus. Practitioner summary: Virtual police training benefits from highly realistic training environments. This study found that adding a pain stimulus heightened perceived stress in a 2D simulator, whereas it influenced neither training responses nor sense of presence in a VR system. VR training appears sufficiently realistic without adding a pain stimulus.